Good news! Things are now *faster* than without the patches!

I found that one can considerably improve the conversion of an element of the base ring into a polynomial ring. Some polynomial rings used a generic conversion map, some used a polynomial base injection map -- and both were slow.

My inspiration came from `Algebras.ParentMethods.__init_extra__`

: If R is a polynomial ring, then multiplication of a scalar with `R.one()`

often is a very fast method to convert the scalar into R.

Problems:

- We should not assume that any ring has a unit (ok, polynomial rings over a unital ring have...).
- Calling
`R.one()`

will usually trigger the creation of a generic conversion - hence, it would be difficult to register it as conversion.
- Not all flavours of polynomial elements have a
`_rmul_`

(polynomial_element_generic has not).
- Sometimes, other conversion maps are registered when one wants to register the polynomial base injection map.

So, I implemented `_rmul_`

and `_lmul_`

for polynomial_element_generic, try various ways (old and new coercion model) of creating a One bypassing conversion maps, and in one init method of polynomial rings I decided to re-initialise the conversion maps.

**Timings**

I tried to test as many cases (multi- versus univariate, `libSingular`

and others, different base rings,...). Without all the patches, we have the following:

sage: R.<x> = ZZ[]
sage: timeit('(2*x-1)^2+5', number=10^4)
10000 loops, best of 3: 23.4 µs per loop
sage: R.<x> = QQ[]
sage: timeit('(2*x-1)^2+5', number=10^4)
10000 loops, best of 3: 24.6 µs per loop
sage: R.<x> = GF(3)[]
sage: timeit('(2*x-1)^2+5', number=10^4)
10000 loops, best of 3: 87.9 µs per loop
sage: R.<x> = QQ['t'][]
sage: timeit('(2*x-1)^2+5', number=10^4)
10000 loops, best of 3: 113 µs per loop
sage: R.<x,y> = ZZ[]
sage: timeit('(2*x-1)^2+5', number=10^4)
10000 loops, best of 3: 13 µs per loop
sage: R.<x,y> = QQ[]
sage: timeit('(2*x-1)^2+5', number=10^4)
10000 loops, best of 3: 16.6 µs per loop
sage: R.<x,y> = GF(3)[]
sage: timeit('(2*x-1)^2+5', number=10^4)
10000 loops, best of 3: 10.8 µs per loop
sage: R.<x,y> = QQ['t'][]
sage: timeit('(2*x-1)^2+5', number=10^4)
10000 loops, best of 3: 238 µs per loop
sage: R.<x,y> = Qp(3)[]
sage: timeit('(2*x-1)^2+5', number=10^4)
10000 loops, best of 3: 511 µs per loop
sage: R.<x> = Qp(3)[]
sage: timeit('(2*x-1)^2+5', number=10^4)
10000 loops, best of 3: 1.06 ms per loop

With the patches, I get

sage: R.<x> = ZZ[]
sage: timeit('(2*x-1)^2+5', number=10^4)
10000 loops, best of 3: 8.97 µs per loop
sage: R.<x> = QQ[]
sage: timeit('(2*x-1)^2+5', number=10^4)
10000 loops, best of 3: 8.3 µs per loop
sage: R.<x> = GF(3)[]
sage: timeit('(2*x-1)^2+5', number=10^4)
10000 loops, best of 3: 70.3 µs per loop
sage: R.<x> = QQ['t'][]
sage: timeit('(2*x-1)^2+5', number=10^4)
10000 loops, best of 3: 82.6 µs per loop
sage: R.<x,y> = ZZ[]
sage: timeit('(2*x-1)^2+5', number=10^4)
10000 loops, best of 3: 12.6 µs per loop
sage: R.<x,y> = QQ[]
sage: timeit('(2*x-1)^2+5', number=10^4)
10000 loops, best of 3: 16.4 µs per loop
sage: R.<x,y> = GF(3)[]
sage: timeit('(2*x-1)^2+5', number=10^4)
10000 loops, best of 3: 10.5 µs per loop
sage: R.<x,y> = QQ['t'][]
sage: timeit('(2*x-1)^2+5', number=10^4)
10000 loops, best of 3: 187 µs per loop
sage: R.<x,y> = Qp(3)[]
sage: timeit('(2*x-1)^2+5', number=10^4)
10000 loops, best of 3: 503 µs per loop
sage: R.<x> = Qp(3)[]
sage: timeit('(2*x-1)^2+5', number=10^4)
10000 loops, best of 3: 1.08 ms per loop

So, there is no significant slow down at all, but a considerable speed up in most cases.

I suppose it can now be reviewed. I understood that the Robert's patches essentially have a positive review, except for the slow-down. So, would it suffice if some of you test my patch?

Apply 9944-poly-cat.patch 9944-poly-cat-doctests.patch trac-9944-poly-cat-review.patch trac9944_polynomial_speedup.patch