#22279 closed defect (duplicate)
PariError: no more variables available
Reported by: | Paul Zimmermann | Owned by: | |
---|---|---|---|
Priority: | major | Milestone: | sage-duplicate/invalid/wontfix |
Component: | number theory | Keywords: | |
Cc: | Merged in: | ||
Authors: | Reviewers: | Jeroen Demeyer | |
Report Upstream: | N/A | Work issues: | |
Branch: | Commit: | ||
Dependencies: | Stopgaps: |
Description (last modified by )
with Sage 7.3 and the following code:
def FindGroupOrder(p,s): K = GF(p) v = K(4*s) u = K(s^2-5) x = u^3 b = 4*x*v a = (v-u)^3*(3*u+v) A = a/b-2 x = x/v^3 b = x^3 + A*x^2 + x E = EllipticCurve(K,[0,b*A,0,b^2,0]) return factor(E.cardinality()) p = 5124287448739202795545639 sigma = 5 ming2 = infinity while True: sigma += 1 l = FindGroupOrder(p, sigma) if len(l) >= 2: g2 = l[-2][0] if g2 >= 2977044737 and g2 < ming2: print "sigma=", sigma, l ming2 = g2
I get:
sigma= 23 2^3 * 3^3 * 83 * 11664842257 * 24503198029 sigma= 187 2^4 * 3 * 5 * 23 * 4569906967 * 203136070453 sigma= 281 2^2 * 3^2 * 17 * 4553084269 * 1838977320077 sigma= 358 2^6 * 3^5 * 3696957041 * 89125674997 sigma= 486 2^7 * 3 * 127 * 3366759491 * 31209473717 sigma= 588 2^6 * 3^3 * 5 * 7 * 3010007183 * 28148429509 sigma= 2643 2^4 * 3 * 5 * 11 * 2988513007 * 649492897793 sigma= 5910 2^3 * 3 * 5 * 47 * 2979655039 * 304921741777 --------------------------------------------------------------------------- PariError Traceback (most recent call last) <ipython-input-5-6dbfc5e42421> in <module>() 1 while True: 2 sigma += Integer(1) ----> 3 l = FindGroupOrder(p, sigma) 4 if len(l) >= Integer(2): 5 g2 = l[-Integer(2)][Integer(0)] <ipython-input-1-13c12fb96337> in FindGroupOrder(p, s) 10 b = x**Integer(3) + A*x**Integer(2) + x 11 E = EllipticCurve(K,[Integer(0),b*A,Integer(0),b**Integer(2),Integer(0)]) ---> 12 return factor(E.cardinality()) 13 /usr/local/SageMath/local/lib/python2.7/site-packages/sage/schemes/elliptic_curves/ell_finite_field.py in cardinality(self, algorithm, extension_degree) 888 algorithm = 'pari' 889 if algorithm == 'pari': --> 890 N = self.cardinality_pari() 891 elif algorithm == 'bsgs': 892 N = self.cardinality_bsgs() /usr/local/SageMath/local/lib/python2.7/site-packages/sage/schemes/elliptic_curves/ell_finite_field.py in cardinality_pari(self) 1082 p = k.characteristic() 1083 if k.degree()==1: -> 1084 return ZZ(p + 1 - int(self._pari_().ellap(p))) 1085 else: 1086 raise ValueError("cardinality_pari() only works over prime fields.") /usr/local/SageMath/local/lib/python2.7/site-packages/sage/libs/pari/auto_gen.pxi in sage.libs.pari.gen.gen_auto.ellap (/usr/local/SageMath/src/build/cythonized/sage/libs/pari/gen.c:30583)() 5386 p = objtogen(p) 5387 _p = (<gen>p).g -> 5388 sig_on() 5389 cdef GEN _ret = ellap(_E, _p) 5390 return pari_instance.new_gen(_ret) /usr/local/SageMath/src/sage/libs/pari/handle_error.pyx in sage.libs.pari.handle_error._pari_err_handle (/usr/local/SageMath/src/build/cythonized/sage/libs/pari/handle_error.c:3102)() 179 pari_error_string = s.decode('ascii') + ": " + pari_error_string 180 --> 181 raise PariError(errnum, pari_error_string, pari_instance.new_gen_noclear(E)) 182 finally: 183 sig_unblock() PariError: no more variables available
Change History (6)
comment:1 Changed 6 years ago by
comment:2 Changed 6 years ago by
Description: | modified (diff) |
---|
comment:3 Changed 6 years ago by
Please fill in the ..., the traceback is very useful to find out where the problem lies.
done.
comment:4 Changed 6 years ago by
PARI just announced they are preparing a PARI 2.9.2 (see #22675) release and this is in their changelog:
19- ellsea could leak variables (=> "no more variables" error) [F30]
I guess this is exactly this issue.
comment:5 Changed 6 years ago by
Milestone: | sage-7.6 → sage-duplicate/invalid/wontfix |
---|---|
Resolution: | → duplicate |
Reviewers: | → Jeroen Demeyer |
Status: | new → closed |
comment:6 Changed 6 years ago by
Jeroen, why did you close that ticket? Did you check it was fixed with PARI 2.9.2? Paul
Note: See
TracTickets for help on using
tickets.
My machine runs out of memory before I get an error.
Please fill in the
...
, the traceback is very useful to find out where the problem lies.