#21413 closed enhancement (fixed)
A class for ring extensions
Reported by:  caruso  Owned by:  

Priority:  major  Milestone:  sage9.1 
Component:  algebra  Keywords:  sd75, padicBordeaux 
Cc:  jsrn, defeo, bruno, nthiery, SimonKing, saraedum  Merged in:  
Authors:  Xavier Caruso  Reviewers:  David Roe, Frédéric Chapoton 
Report Upstream:  N/A  Work issues:  
Branch:  c43507c (Commits)  Commit:  
Dependencies:  #26105  Stopgaps: 
Description (last modified by )
Sage provides a rich framework for dealing with all classical algebraic structures: rings, fields, algebras, etc.
Nevertheless, given (for instance) two fields K and L with K \subset L, it is not possible to build the extension L/K as a Sage object. However one can easily imagine methods related to this extension (e.g. degree
, discriminant
, normal_basis
, decompose_on_basis
, etc.)
With Bruno Grenet, Johan Rosenkilde and Luca De Feo, we raised this issue at Sage Days 75. A summary of our discussion is available here.
This ticket implements a generic class for ring extensions, and more specific classes for finite free ring extensions (as finite degree field extensions).
Below is a small tutorial extracted from the documentation:
Extension of rings. Sage offers the possibility to work with ring extensions `L/K` as actual parents and perform meaningful operations on them and their elements. The simplest way to build an extension is to use the method :meth:`sage.rings.ring.CommutativeRing.over` on the top ring, that is `L`. For example, the following line constructs the extension of finite fields `\mathbf{F}_{5^4}/\mathbf{F}_{5^2}`:: sage: GF(5^4).over(GF(5^2)) Field in z4 with defining polynomial x^2 + (4*z2 + 3)*x + z2 over its base By default, Sage reuses the canonical generator of the top ring (here `z_4 \in \mathbf{F}_{5^4}`), together with its name. However, the user can customize them by passing in appropriate arguments:: sage: F = GF(5^2) sage: k = GF(5^4) sage: z4 = k.gen() sage: K.<a> = k.over(F, gen = 1z4) sage: K Field in a with defining polynomial x^2 + z2*x + 4 over its base The base of the extension is available via the method :meth:`base` (or equivalently :meth:`base_ring`):: sage: K.base() Finite Field in z2 of size 5^2 It also possible to building an extension on top of another extension, obtaining this way a tower of extensions:: sage: L.<b> = GF(5^8).over(K) sage: L Field in b with defining polynomial x^2 + (4*z2 + 3*a)*x + 1  a over its base sage: L.base() Field in a with defining polynomial x^2 + z2*x + 4 over its base sage: L.base().base() Finite Field in z2 of size 5^2 The method :meth:`bases` gives access to the complete list of rings in a tower:: sage: L.bases() [Field in b with defining polynomial x^2 + (4*z2 + 3*a)*x + 1  a over its base, Field in a with defining polynomial x^2 + z2*x + 4 over its base, Finite Field in z2 of size 5^2] Once we have constructed an extension (or a tower of extensions), we have interesting methods attached to it. As a basic example, one can compute a basis of the top ring over any base in the tower:: sage: L.basis_over(K) [1, b] sage: L.basis_over(F) [1, a, b, a*b] When the base is omitted, the default is the natural base of the extension:: sage: L.basis_over() [1, b] The method :meth:`sage.rings.ring_extension_element.RingExtensionWithBasis.vector` computes the coordinates of an element according to the above basis:: sage: u = a + 2*b + 3*a*b sage: u.vector() # over K (a, 2 + 3*a) sage: u.vector(F) (0, 1, 2, 3) One can also compute traces and norms with respect to any base of the tower:: sage: u.trace() # over K (2*z2 + 1) + (2*z2 + 1)*a sage: u.trace(F) z2 + 1 sage: u.trace().trace() # over K, then over F z2 + 1 sage: u.norm() # over K (z2 + 1) + (4*z2 + 2)*a sage: u.norm(F) 2*z2 + 2 And minimal polynomials:: sage: u.minpoly() x^2 + ((3*z2 + 4) + (3*z2 + 4)*a)*x + (z2 + 1) + (4*z2 + 2)*a sage: u.minpoly(F) x^4 + (4*z2 + 4)*x^3 + x^2 + (z2 + 1)*x + 2*z2 + 2
Change History (120)
comment:1 Changed 4 years ago by
 Branch set to u/caruso/21413/class_ring_extension
comment:2 Changed 4 years ago by
 Commit set to 556da4d4c006f305384a3368018809323d0e0997
comment:3 Changed 4 years ago by
 Commit changed from 556da4d4c006f305384a3368018809323d0e0997 to c82968fff27df846064805774d1d3bf39ddc9759
comment:4 Changed 4 years ago by
 Commit changed from c82968fff27df846064805774d1d3bf39ddc9759 to 036fb2a439cd9ee534d8e9489da02a3dde2452ea
Branch pushed to git repo; I updated commit sha1. New commits:
f0a7ce4  Doctest from the class AlgebraFromMorphism and some methods of this class

b6c9a33  Doctest fixed

67c82c7  Merge branch 'develop' into 21413/class_ring_extension

8d70dbe  Code split in several files. More doctests.

efa3689  Doctest for BaseActionOnRing

7f8ce2d  Doctest for the class AlgebraToRing_coercion

991cc70  Doctest for the class AlgebraFMElement

036fb2a  Adding licence & author

comment:5 Changed 4 years ago by
 Description modified (diff)
 Status changed from new to needs_review
comment:6 Changed 4 years ago by
Wow, this is great Xavier! Sorry for not being more active before  I promise to look more at it tomorrow.
I'm wondering whether it's a good idea to merge the "framework" before the first concrete instantiation? I.e. whether we should try to get the fieldextensionalgebra finished before considering this as mature? (I know you have bad experience with too large patches, but if we don't put too much stuff in the field extension as a first approximation, perhaps it's ok).
Best, Johan
comment:7 followup: ↓ 8 Changed 4 years ago by
In the following, the extension is A = L/K with L and K rings. L.base()
is B.
Sometimes B is a subring of K.
Right now this AlgebraFromMorphism
is mainly a thin wrapper around the
L, so e.g. A elements are represented internally as elements of L, and this is
also how you print them. Can you try to convince me of the value from a user's
POV that he can do arithmetic on his elements inside this algebra, rather than
dropping the whole Algebra idea and just letting RingExtension
be some
nonparent object with fancy methods on it like decompose_on_basis
?
What I had in mind after SD75 is that RingExtension
is an Algebra
as in "a
vector space equipped with a bilinear product"; in other words, when I want to
see L as a vector space over K, I use RingExtension
. In this world, it makes
sense to have arithmetic on elements of A
and they should print (and possibly
be internally represented by) vectors over K; because that's the whole point of
why I'm wrapping L.
In that world, AlgebraFromMorphism
shouldn't have a gen
method because it
isn't really focused on its personality as a ring (it might have a
multiplicative_generator
if you like). But it should definitely have a basis
method.
Other remarks that I got by looking at the code. Let's see where the above discussion takes us before doing much about the stuff below:
 Why are you not giving
self._base
as argument toCommutativeAlgebra.__init__
? You write in a comment that we don't want a coercion mapbase > self
 I don't see why not? I guess this is related to the left/right action dichotomy you have?  The module doc for
algebra_from_morphism is too short
. It should explain what this module is and what is offered. Redundancy is not bad.  A method "def something(self)" should never have the docstring "Return the something of self". That's utterly unhelpful :)
from_base_ring
has an extremely bad name considering that it doesn't embed an element of the base. I think we need to establish some proper nomenclature and do some commutation diagrams in the doc of this module. The doc for
scalar_restriction
is very hard to read. Attempt to write before INPUT what this means. Could we write something like
If ``newbase`` is a subring of `self.base()`, then the scalar restriction of `self` to `newbase` is the ring extension `self.ring()/newbase`. The defining morphism will be the composition of `f` and ``self.defining_morphism()`` where `f` is the coercion map from `newbase` to `self.base()`. ``newbase`` can be given as an extension, ... ``newbase`` can be given as a morphism, ...
What is the argument for allowing extensions and morphisms as arguments to
scalar_restriction
? Is it really something you would normally do? Couldn't the user just doA.scalar_restriction(mymorphism.codomain())
, etc.?
 I don't like
ring
andbase
. They are too short and it's not clear which is which.  Speaking in parents, you let K * A = A but you let A * K = L. Won't this be a major source of confusion for users? I think your nasty example with noncommutativity at the end of
RingExtension
doc makes this even worse! I'm also very concerned that this might break several things in Sage since you're inheriting fromCommutativeAlgebra
.  Doc of
RingExtension
: can we make a commuting diagram to describe the coercion between L1/K1 and L2/K2? Something like
K1 > L1 ^     v K2 > L2
Best, Johan
comment:8 in reply to: ↑ 7 ; followup: ↓ 9 Changed 4 years ago by
Replying to jsrn:
Right now this
AlgebraFromMorphism
is mainly a thin wrapper around the L, so e.g. A elements are represented internally as elements of L, and this is also how you print them. Can you try to convince me of the value from a user's POV that he can do arithmetic on his elements inside this algebra, rather than dropping the whole Algebra idea and just lettingRingExtension
be some nonparent object with fancy methods on it likedecompose_on_basis
?
Maybe I misunderstand your proposal but I really think that a ring extension should be a parent because we really want to take advantage of the coercion stuff.
Nonetheless, the question "should it derive from CommutativeAlgebra
?" is arguable and I can imagine arguments in both directions.
What I had in mind after SD75 is that
RingExtension
is anAlgebra
as in "a vector space equipped with a bilinear product"; in other words, when I want to see L as a vector space over K, I useRingExtension
.
It is definitely.
In this world, it makes sense to have arithmetic on elements of
A
and they should print (and possibly be internally represented by) vectors over K; because that's the whole point of why I'm wrapping L.
I agree. But all of this has to be implemented in subclasses. For now, I just wrote a very general class which is supposed to deal with all algebras (possibly not free, not finite...) so it is of course difficult to implement concrete methods.
But these methods clearly exist. Here is a farfromexhaustive list: scalar_restriction
(which is already implemented), __mul__
(usual product of algebras), tensor_product
, scalar_extension
, cayley_differentials
, krull_relative_dimension
, is_free
, is_finite
, is_flat
, is_etale
, is_smooth
, is_open_immersion
, is_closed_immersion
, is_galois
, galois_group
. And for elements: trace
, norm
.
If you insist, I can put these methods in the general class and let them raise NotImplementedError
... but it would be difficult to write the doctest :)
In that world,
AlgebraFromMorphism
shouldn't have agen
method because it isn't really focused on its personality as a ring (it might have amultiplicative_generator
if you like).
The generator of an algebra is a welldefined mathematical notion: the algebra L/K is generated by x if $K \cup {x}$ generates L as a ring. So it clearly makes sense to have a gen
method.
But it should definitely have a
basis
method.
Well there does exist algebras which are not free. So the basis
method is clearly something we want. However it should not be inserted in such a general class but in the subclass FreeAlgebraFromMorphism
or FiniteFreeAlgebraFromMorphism
(which is coming soon).
Why are you not giving
self._base
as argument toCommutativeAlgebra.__init__
? You write in a comment that we don't want a coercion mapbase > self
 I don't see why not? I guess this is related to the left/right action dichotomy you have?
Suppose that we create an algebra L/K with a defining morphism phi : K > L which is not a coercion map. If K coerces to L/K through phi and L/K coerces to L, then we would derive that K coerces to L through phi.
Such a situation really occurs in every day life (at least for people working in algebraic geometry). For instance, if K has characteristic p, these people often consider K as an algebra over itself *through the Frobenius morphism* (which is definitely not a coercion map).
The module doc for
algebra_from_morphism is too short
. It should explain what this module is and what is offered.Redundancy is not bad.
A method "def something(self)" should never have the docstring "Return the something of self". That's utterly unhelpful :)
Ok for both. I'll try to fix this.
from_base_ring
has an extremely bad name considering that it doesn't embed an element of the base. I think we need to establish some proper nomenclature and do some commutation diagrams in the doc of this module.
It is not my fault :). This method is needed by the coercion model.
The doc for
scalar_restriction
is very hard to read. Attempt to write before INPUT what this means. Could we write something like
Ok. I'll do it.
What is the argument for allowing extensions and morphisms as arguments to
scalar_restriction
? Is it really something you would normally do? Couldn't the user just doA.scalar_restriction(mymorphism.codomain())
, etc.?
Sure, it is something we normally do... just as composing ring homomorphisms.
I don't like
ring
andbase
. They are too short and it's not clear which is which.
Ok for changing. I'm also not completed satisfied with these names. Do you have some propositions?
Speaking in parents, you let K * A = A but you let A * K = L. Won't this be a major source of confusion for users? I think your nasty example with noncommutativity at the end of
RingExtension
doc makes this even worse!
I definitely agree that it is not perfect, but I have not found something better :). The point is that I really want to have algebras_from_morphisms_which_are_not_coercion_maps and I think that implementing the action of scalars (through the defining morphism) is the least we can do.
I'm also very concerned that this might break several things in Sage since you're inheriting from
CommutativeAlgebra
.
It is one reason why I'm sure that we should inherit from CommutativeAlgebra
Doc of
RingExtension
: can we make a commuting diagram to describe the coercion between L1/K1 and L2/K2?
Ok.
Xavier
comment:9 in reply to: ↑ 8 ; followup: ↓ 10 Changed 4 years ago by
 Cc nthiery SimonKing added
 Status changed from needs_review to needs_info
Thanks for your careful explanations. I'm learning a lot here.
Replying to carus:
Maybe I misunderstand your proposal but I really think that a ring extension should be a parent because we really want to take advantage of the coercion stuff.
Nonetheless, the question "should it derive from
CommutativeAlgebra
?" is arguable and I can imagine arguments in both directions.
OK, so "coercion stuff" is an argument in favour of a Parent. I guess you mean that many objects will magically coerce to the DoWhatIMean behaviour on methods. But if a weird/surprising behaviour follows from forcing it into the category framework, perhaps that's an argument against it.
At least having a RingExtension
being a class with lots of service methods, sort of like David's RelativeFiniteFieldExtension
, there will be no arithmetic problems. You could also put norm
and trace
there.
In this world, it makes sense to have arithmetic on elements of
A
and they should print (and possibly be internally represented by) vectors over K; because that's the whole point of why I'm wrapping L.I agree. But all of this has to be implemented in subclasses. For now, I just wrote a very general class which is supposed to deal with all algebras (possibly not free, not finite...) so it is of course difficult to implement concrete methods.
OK, that makes sense. I can see why the general class would have very weak functionality then.
But these methods clearly exist. Here is a farfromexhaustive list: .... If you insist, I can put these methods in the general class and let them raise
NotImplementedError
... but it would be difficult to write the doctest :)
Perhaps that's not a bad idea: it's nicer that any algebra will have the methods you expect and then throw NotImplementedError
rather than not advertising the method at all.
The doctest can be on a more concrete class that does implement the method. If none exist for this ticket, the doctest will just be one demonstrating the NotImplentedError
for now, with the sole purpose of doctest coverage ;)
The generator of an algebra is a welldefined mathematical notion: the algebra L/K is generated by x if $K \cup {x}$ generates L as a ring. So it clearly makes sense to have a
gen
method.
Hmm, but couldn't there be multiple generators? E.g. F[x,y]/F
?
Well there does exist algebras which are not free. So the
basis
method is clearly something we want. However it should not be inserted in such a general class but in the subclassFreeAlgebraFromMorphism
orFiniteFreeAlgebraFromMorphism
(which is coming soon).
OK, argument accepted. But I think this kind of stuff reinforces that we should try to design the first concrete RingExtension
, e.g. FiniteFieldExtension
simultaneously with this ticket. Then we'll better be able to judge what goes where and how it should look to be useful on both sides.
Suppose that we create an algebra L/K with a defining morphism phi : K > L which is not a coercion map. If K coerces to L/K through phi and L/K coerces to L, then we would derive that K coerces to L through phi.
Such a situation really occurs in every day life (at least for people working in algebraic geometry). For instance, if K has characteristic p, these people often consider K as an algebra over itself *through the Frobenius morphism* (which is definitely not a coercion map).
Yikes! So we must disallow coercion from K > L/K
. But we should allow A(k)
and k*a
, a*k
, k + a
, etc. for k in K
and a in A
. And A(a * l)
is
different from a * A(l)
. Oh man...
It seems to me that this is really dangerous territory  but perhaps
unavoidable. Someone implementing algorithms for CommutativeAlgebra
is going
to assume that there is coercion from base
to self
. And that multiplication
of base
and self
elements commute!
Perhaps CommutativeAlgebra
should be called something different, and
AlgebraFromMorphism
should have a different base class. I've cc'ed Nicolas
Thiery and Simon King in this discussion to chip in.
from_base_ring
has an extremely bad name considering that it doesn't embed an element of the base. I think we need to establish some proper nomenclature and do some commutation diagrams in the doc of this module.It is not my fault :). This method is needed by the coercion model.
Eew, yet another symptom that we're perhaps abusing the current hierarchy.
Why doesn't GF(9)
have from_base_ring
? What kind of Parent requires it?
What is the argument for allowing extensions and morphisms as arguments to
scalar_restriction
? Is it really something you would normally do? Couldn't the user just doA.scalar_restriction(mymorphism.codomain())
, etc.?Sure, it is something we normally do... just as composing ring homomorphisms.
So it is something where established mathematical notation supports this
directly? It's much more explicit to just write
A.scalar_restriction(Aother.ring())
, so I'd prefer not supporting
A.scalar_restriction(Aother)
, except if a properly educated mathematician
would be very surprised if this didn't exist.
I don't like
ring
andbase
. They are too short and it's not clear which is which.Ok for changing. I'm also not completed satisfied with these names. Do you have some propositions?
We should probably first figure out what to do hierarchywise. But perhaps
keep ring > ring_of_element
and base > ring_of_scalars
. Alternative element_ring
resp. scalar_ring
.
Speaking in parents, you let K * A = A but you let A * K = L. Won't this be a major source of confusion for users? I think your nasty example with noncommutativity at the end of
RingExtension
doc makes this even worse!I definitely agree that it is not perfect, but I have not found something better :). The point is that I really want to have algebras_from_morphisms_which_are_not_coercion_maps and I think that implementing the action of scalars (through the defining morphism) is the least we can do.
What do you mean "is the least we can do"?
Why is this an argument to make left and right actions different? Couldn't you implement the same left/right action, namely mapping K > A
by phi
, followed by multiplication in A
.
Best, Johan
comment:10 in reply to: ↑ 9 Changed 4 years ago by
Replying to jsrn:
Perhaps that's not a bad idea: it's nicer that any algebra will have the methods you expect and then throw
NotImplementedError
rather than not advertising the method at all.
OK. But, on the other hand, the list of possible methods is possibly quite long. Having a parent with 90% not implemented methods is also not that nice.
The generator of an algebra is a welldefined mathematical notion: the algebra L/K is generated by x if $K \cup {x}$ generates L as a ring. So it clearly makes sense to have a
gen
method.Hmm, but couldn't there be multiple generators? E.g.
F[x,y]/F
?
Yes, of course.
For traditional rings, the current behaviour of gen
is rather stange (to me):
sage: R.<x,y> = QQ[] sage: R.gen() x
Is that normal?
OK, argument accepted. But I think this kind of stuff reinforces that we should try to design the first concrete
RingExtension
, e.g.FiniteFieldExtension
simultaneously with this ticket. Then we'll better be able to judge what goes where and how it should look to be useful on both sides.
I just do not want this ticket to become too big.
But I agree for implementing FiniteFieldExtension
here.
Yikes! So we must disallow coercion from
K > L/K
. But we should allowA(k)
andk*a
,a*k
,k + a
, etc. fork in K
anda in A
. AndA(a * l)
is different froma * A(l)
. Oh man...
(First, let me emphasize that this issue only occurs when the defining morphism is not a coercion map.)
Currently A(k)
, a*k
, k + a
uses coercion maps (and not defining morphism): for instance, if K coerces to L then k+a
is the addition in L while if K does not coerce to L, k+a
produces an error. Only k*a
(implemented by a left action of K on L/K) uses the defining morphism.
I agree that it is really confusing but the same confusion appears exactly in the same way in the "theory". So I assume that people who really wants to work with algebras whose defining morphisms are not coercion maps are very aware of this source of confusion!
Why left action and not right action? Because usually scalars act on the left (for instance, we write 2x
and not x2
when x lies in some vector space). I nevertheless agree that this convention is not very strong. Another option would be to implement both actions (at some point I actually did this) but it then becomes impossible to multiply an element of K by an element of L without writing explicitly the conversion.
Probably the best solution would be to have a completely different operator for the action of the base through the defining morphism. But which one? Is it a good idea to override the dot operator?
Why doesn't
GF(9)
havefrom_base_ring
? What kind of Parent requires it?
I think (but I'm not quite sure) that it is used when no coercing map is set from self._base
to self
.
So it is something where established mathematical notation supports this directly? It's much more explicit to just write
A.scalar_restriction(Aother.ring())
, so I'd prefer not supportingA.scalar_restriction(Aother)
, except if a properly educated mathematician would be very surprised if this didn't exist.
I think that sometimes mathematicians may want to invoke A.scalar_restriction(Aother)
. For instance assume that we have an algebra A defined over C[X]. The fibre of A at the point x is by definition the scalar extension of A with respect to the morphism C[X] > C mapping X to x. (It is actually also A/(Xx), but sometimes we really want to think of it as a scalar extension.)
Actually we probably prefer to use the "base_change" in that case. So maybe we can implement two methods: first scalar_extension
which always uses coercion maps and second base_change
which accepts all constructions.
I think that implementing the action of scalars (through the defining morphism) is the least we can do.
What do you mean "is the least we can do"?
When we want to regard L as a Kalgebra, a basic thing we want to have is the action of K on L defining the algebra.
comment:11 followup: ↓ 12 Changed 4 years ago by
I just found this ticket and I only have a vague idea about what this ticket does. I am curious if the present ticket would solve or at least help one solve each of the following problems (of mine)? I believe that these cases are not supported by Sage yet.
 Suppose F is a nonprime finite field, say
GF(3^2)
. I want to construct an extension field E over F. SoE,phi=F.extension(4,map=True)
gives the extension fieldGF(3^8)
and the embedding phi. This currently only works for prime fields.
 Suppose K is a field and R is a subring of K. Suppose K is the fraction field of R. Let e be an element of K. Then
d=e.denominator(R)
gives a denominator of e in R such thatd*e.numerator(R)
is in R.
 Let E,F be rings. Suppose phi is a homomorphism from E to F. I want to extend phi to a homomorphism psi from the polynomial ring R=E[x] to F mapping x to c in F. Thus
psi(a2*x^2+a1*x+a0)==phi(a2)*c^2+phi(a1)*c+phi(a0)
. Perhaps I wantR.hom([c],F, base=phi)
or like to work.
comment:12 in reply to: ↑ 11 ; followup: ↓ 13 Changed 4 years ago by
Replying to klee:
 Suppose F is a nonprime finite field, say
GF(3^2)
. I want to construct an extension field E over F. SoE,phi=F.extension(4,map=True)
gives the extension fieldGF(3^8)
and the embedding phi. This currently only works for prime fields.
That currently works fine, just try it.
If you want to go from F
back to E
for any of the elements phi(E)
, use phi.section()
.
If you want to express F
as a vector space over E
, things are more limited. We implemented basic support for it in sage.coding.relative_finite_field_extension
. This ticket is about making that functionality much more general and thought out, and getting it into the core algebra of Sage.
 Suppose K is a field and R is a subring of K. Suppose K is the fraction field of R. Let e be an element of K. Then
d=e.denominator(R)
gives a denominator of e in R such thatd*e.numerator(R)
is in R.
That also currently works fine. I just tested with R = GF(3^2)['x']
:
sage: R = GF(3^2)['x'] sage: K = R.fraction_field() sage: e = K.random_element() sage: e.denominator() (z2 + 2)*x^2 + (z2 + 1)*x sage: e.denominator().parent() Univariate Polynomial Ring in x over Finite Field in z2 of size 3^2 sage: e.denominator() in R True sage: R( e.denominator() * e ) (2*z2 + 2)*x^2 + (z2 + 2)*x + z2
 Let E,F be rings. Suppose phi is a homomorphism from E to F. I want to extend phi to a homomorphism psi from the polynomial ring R=E[x] to F mapping x to c in F. Thus
psi(a2*x^2+a1*x+a0)==phi(a2)*c^2+phi(a1)*c+phi(a0)
. Perhaps I wantR.hom([c],F, base=phi)
or like to work.
That seems more tricky to do. Note that it can easily be split into the composition of two homomorphisms:
mapCoef: E[x] > F[x] a*x^i > phi(a)*x^i eval: F[x] > F x > c
The eval homomorphism can be created in the current Sage, but I don't know how to conveniently create mapCoef
(as a Morphism
object).
Best, Johan
comment:13 in reply to: ↑ 12 Changed 4 years ago by
Replying to jsrn:
Replying to klee:
 Suppose F is a nonprime finite field, say
GF(3^2)
. I want to construct an extension field E over F. SoE,phi=F.extension(4,map=True)
gives the extension fieldGF(3^8)
and the embedding phi. This currently only works for prime fields.That currently works fine, just try it.
If you want to go from
F
back toE
for any of the elementsphi(E)
, usephi.section()
.If you want to express
F
as a vector space overE
, things are more limited. We implemented basic support for it insage.coding.relative_finite_field_extension
. This ticket is about making that functionality much more general and thought out, and getting it into the core algebra of Sage.
Nice. Good luck!
comment:14 Changed 4 years ago by
The following reference might be useful for the design of the class:
Lattices of Compatibly Embedded Finite Fields  WIEB BOSMA, JOHN CANNON AND ALLAN STEEL 1997
as various extensions should be compatible to each other...
comment:15 Changed 4 years ago by
 Branch changed from u/caruso/21413/class_ring_extension to u/defeo/21413/class_ring_extension
comment:16 Changed 4 years ago by
 Commit changed from 036fb2a439cd9ee534d8e9489da02a3dde2452ea to 5c1c5b680fe08406fc6d34ccdddca13ee695ab78
Doctest failures:
sage t src/sage/rings/algebra_from_morphism.py ********************************************************************** File "src/sage/rings/algebra_from_morphism.py", line 260, in sage.rings.algebra_from_morphism.AlgebraFromMorphism._pushout_ Failed example: E2._pushout_(E1) is E2 Expected: True Got: False ********************************************************************** File "src/sage/rings/algebra_from_morphism.py", line 262, in sage.rings.algebra_from_morphism.AlgebraFromMorphism._pushout_ Failed example: E1._pushout_(E2) is E2 Expected: True Got: False ********************************************************************** File "src/sage/rings/algebra_from_morphism.py", line 265, in sage.rings.algebra_from_morphism.AlgebraFromMorphism._pushout_ Failed example: E1._pushout_(L2) is L2 Expected: True Got: False ********************************************************************** File "src/sage/rings/algebra_from_morphism.py", line 272, in sage.rings.algebra_from_morphism.AlgebraFromMorphism._pushout_ Failed example: E1p._pushout_(E2) is L2 Expected: True Got: False ********************************************************************** File "src/sage/rings/algebra_from_morphism.py", line 276, in sage.rings.algebra_from_morphism.AlgebraFromMorphism._pushout_ Failed example: E1p._pushout_(E2p) is L2 Expected: True Got: False ********************************************************************** 1 item had failures: 5 of 11 in sage.rings.algebra_from_morphism.AlgebraFromMorphism._pushout_ [119 tests, 5 failures, 0.86 s]  sage t src/sage/rings/algebra_from_morphism.py # 5 doctests failed  Total time for all tests: 0.9 seconds cpu time: 0.9 seconds cumulative wall time: 0.9 seconds
New commits:
5c1c5b6  Merge 7.6.beta2

comment:17 followup: ↓ 18 Changed 4 years ago by
Had you guys notice that there is this interface in Sage, which returns a mostly empty shell:
sage: K = GF(5^2) sage: L = GF(5^4) sage: E = L.algebra(K, category=Semigroups()) sage: E Free module generated by Finite Field in z4 of size 5^4 over Finite Field in z2 of size 5^2 sage: E.an_element() 2*B[0] + 2*B[z4] + 3*B[z4^2] sage: E.categories() [Category of finite dimensional semigroup algebras over Finite Field in z2 of size 5^2, Category of semigroup algebras over Finite Field in z2 of size 5^2, Category of associative algebras over Finite Field in z2 of size 5^2, Category of rngs, Category of associative additive commutative additive associative additive unital distributive magmas and additive magmas, Category of magma algebras over Finite Field in z2 of size 5^2, Category of magmatic algebras with basis over Finite Field in z2 of size 5^2, Category of magmatic algebras over Finite Field in z2 of size 5^2, Category of additive commutative additive associative additive unital distributive magmas and additive magmas, Category of additive commutative additive associative distributive magmas and additive magmas, Category of additive associative distributive magmas and additive magmas, Category of distributive magmas and additive magmas, Category of magmas and additive magmas, Category of finite semigroups, Category of semigroups, Category of magmas, Category of finite dimensional modules with basis over Finite Field in z2 of size 5^2, Category of set algebras over Finite Field in z2 of size 5^2, Category of vector spaces with basis over Finite Field in z2 of size 5^2, Category of modules with basis over Finite Field in z2 of size 5^2, Category of finite dimensional modules over Finite Field in z2 of size 5^2, Category of vector spaces over Finite Field in z2 of size 5^2, Category of modules over Finite Field in z2 of size 5^2, Category of bimodules over Finite Field in z2 of size 5^2 on the left and Finite Field in z2 of size 5^2 on the right, Category of right modules over Finite Field in z2 of size 5^2, Category of left modules over Finite Field in z2 of size 5^2, Category of commutative additive groups, Category of additive groups, Category of additive inverse additive unital additive magmas, Category of commutative additive monoids, Category of additive monoids, Category of additive unital additive magmas, Category of commutative additive semigroups, Category of additive commutative additive magmas, Category of additive semigroups, Category of additive magmas, Category of finite sets, Category of sets, Category of sets with partial maps, Category of objects]
comment:18 in reply to: ↑ 17 ; followup: ↓ 20 Changed 4 years ago by
Replying to defeo:
Had you guys notice that there is this interface in Sage, which returns a mostly empty shell:
In what sense would it be relevant for this ticket?
comment:19 followup: ↓ 21 Changed 4 years ago by
Hello, as you might have guessed, I'm trying to resurrect this ticket.
My biggest concern is the same as Johan's: I find k*a != a*k
very confusing for two reasons:
 It is silently not commutative;
 The parent of
a*k
is neitherA
norK
.
However I think the fix is simple: explicit is better than implicit, get rid of the coercion A > L
. I find the following idiom completely reasonable:
sage: K = GF(5^2); z2 = K.gen() sage: L = GF(5^4); z4 = L.gen() sage: A = RingExtension(L, K, K.frobenius_endomorphism()) sage: z2 * E(z4) 4*z4^3 + 3*z4^2 + 2*z4 + 2 sage: E(z4) * z2 TypeError: ... sage: L(E(z4)) * z2 z4^3 + 2*z4^2 + 4*z4 + 3
It could be useful if the left action was represented by an operator other than *
, however there is no acceptable operator in Python (.
cannot be overridden and @
(matmul) was only introduced in Python 3.5).
Or maybe just have the right action be the same as the left action, which apparently you already did.
comment:20 in reply to: ↑ 18 ; followup: ↓ 22 Changed 4 years ago by
Replying to SimonKing:
Replying to defeo:
Had you guys notice that there is this interface in Sage, which returns a mostly empty shell:
In what sense would it be relevant for this ticket?
At the very least, it is confusing that there is a method defined on L
whose name suggests it might return RingExtension(L, K)
, and it returns a completely unrelated object instead.
We had already discussed of various possible APIs for this, and L.algebra_over(K)
was one of those. I think Johan was in favour of this kind of API, rather than cluttering the namespace with yet another mysterious name RingExtension
. It would be quite confusing to have L.algebra()
and L.algebra_over()
.
comment:21 in reply to: ↑ 19 ; followup: ↓ 23 Changed 4 years ago by
Replying to defeo:
My biggest concern is the same as Johan's: I find
k*a != a*k
very confusing for two reasons:
 It is silently not commutative;
No problem, from my perspective. While "+" normally denotes a commutative operation in mathematics, "*" is generally not supposed to be commutative.
 The parent of
a*k
is neitherA
norK
.
Why would that be a problem? If a=x+2
is in ZZ[x]
and x=1/2
is in QQ
then a*x
neither is in ZZ[x]
nor in QQ
.
It could be useful if the left action was represented by an operator other than
*
, however there is no acceptable operator in Python (.
cannot be overridden and@
(matmul) was only introduced in Python 3.5).
Perhaps x>>a
and a<<x
?
Best regards, Simon
comment:22 in reply to: ↑ 20 ; followup: ↓ 24 Changed 4 years ago by
Replying to defeo:
At the very least, it is confusing that there is a method defined on
L
whose name suggests it might returnRingExtension(L, K)
, and it returns a completely unrelated object instead.
I would not expect L.algebra(K)
to return RingExtension(L,K)
but to return the K
algebra with basis L
whose multiplication is induced by the multiplication in L
(hence L
is only supposed to be a multiplicative monoid).
We had already discussed of various possible APIs for this, and
L.algebra_over(K)
was one of those. I think Johan was in favour of this kind of API, rather than cluttering the namespace with yet another mysterious nameRingExtension
.
I agree. When developing SageMath, we should avoid adding further stuff to the global namespace, whenever possible.
It would be quite confusing to have
L.algebra()
andL.algebra_over()
.
Perhaps a little variation: L.as_algebra_over(K)
. Or, changing perspective: L
is an extension of K
; so, L/K
should be returned by a method of K
, not by a method of L
. Say, K.extension(L)
.
comment:23 in reply to: ↑ 21 Changed 4 years ago by
Replying to SimonKing:
Replying to defeo:
My biggest concern is the same as Johan's: I find
k*a != a*k
very confusing for two reasons:
 It is silently not commutative;
No problem, from my perspective. While "+" normally denotes a commutative operation in mathematics, "*" is generally not supposed to be commutative.
I expect it to be associative, at least. With the proposed code (k*a)*k != k*(a*k)
.
 The parent of
a*k
is neitherA
norK
.Why would that be a problem? If
a=x+2
is inZZ[x]
andx=1/2
is ina*x
neither is inZZ[x]
nor in
I know the coercion system finds common parents, but in your example parent(a*x) == parent(x*a)
, and I expect the same here. I know there are exceptions even to this (e.g., matrices), but here we are talking about a commutative ring A
, so I expect *
to behave like its internal multiplication.
By a very common stretch of notation, I am glad to accept k*a
as a shorthand for phi(k)*a
, but I really don't see why a*k
should be a shorthand for L(a)*L(k)
. If we want such exotic semantics, then we should use another symbol than *
. See below
It could be useful if the left action was represented by an operator other than
*
, however there is no acceptable operator in Python (.
cannot be overridden and@
(matmul) was only introduced in Python 3.5).Perhaps
x>>a
anda<<x
?
That's quite ugly, but as I said, it would be the only sensible way to support such exotic semantics.
Let's keep in mind that 90% of Sage users are going to use this to work with field extensions of finite fields or number fields. They expect k*a
to mean "scalar multiplication of a
by k
", not to raise an exception.
The uses proposed by Xavier are certainly important, and it would be nice to support them, but I think those mathematicians who want to work with them should be ready to accept a slightly more explicit notation (an explicit conversion, or a different operator). If they really want to have k*a == a*k^p
, then they should use a dedicated class such as SkewPolynomialRing
.
comment:24 in reply to: ↑ 22 Changed 4 years ago by
Replying to SimonKing:
Replying to defeo:
At the very least, it is confusing that there is a method defined on
L
whose name suggests it might returnRingExtension(L, K)
, and it returns a completely unrelated object instead.I would not expect
L.algebra(K)
to returnRingExtension(L,K)
but to return theK
algebra with basisL
whose multiplication is induced by the multiplication inL
(henceL
is only supposed to be a multiplicative monoid).
I frankly don't know what I expect from L.algebra(K)
. I would run it, and see what comes out.
Perhaps a little variation:
L.as_algebra_over(K)
. Or, changing perspective:L
is an extension ofK
; so,L/K
should be returned by a method ofK
, not by a method ofL
. Say,K.extension(L)
.
We had already considered this possibility. The problem is that K.extension()
is already defined for most rings, and it returns a ring. It wouldn't break compatibility, but it would be a bit surprising if QQ.extension(x^2+1)
returned a number field, whereas QQ.extension(K)
returned an algebra object.
Of course, it could be K.extension_algebra(L)
.
comment:25 Changed 4 years ago by
 Cc saraedum added
comment:26 Changed 3 years ago by
I am just reading up on this ticket, it has quote a long discussion. Does it still really need info? If so could someone who knows what info put that in the ticket description?
comment:27 Changed 3 years ago by
The "info" the ticket needs is a few decisions on trickier points of the design. But perhaps what would be most useful is a concrete suggestion by updating the ticket's code. I would personally also really like to see how e.g. a finite field extension of #20284 would be instantiated in the current  quite abstract  proposal.
comment:28 Changed 3 years ago by
Yes I agree that is important to get the design right, especially since this touches something that touches quite a few areas of sage, since finite fields are far from the only place that one wants to consider relative extensions.
It is quite difficult for me to grasp what the "current proposal" is from the all the discussion that has been going on here. Or is the the one linked to in the description. I need this for something else as well so I plan to work on this.
What I think is that sage already has a class for relative extensions, and that class is called CommutativeAlgebra? from sage.rings.ring . The only problem is that right now that class is a dummy class which has almost nothing implemented yet.
So what I propose is the following, try to put as much general code as possible in CommutativeAlgebra? and set up a framework there that makes it easy later for concrete implementations of rings/fields to see themselves as Algebras over over other bases then their current base. And use this framework to make things work as follows:
sage: GF(81).vector_space() #note this already works Vector space of dimension 4 over Finite Field of size 3 sage: GF81_as_GF_9_algeba = Algebras(GF(9))(GF(81)) sage: GF81_as_GF_9_algeba.vector_space() Vector space of dimension 2 over Finite Field in z2 of size 3^2
For the more complicated cases where there is no coercion morphism yet we can try to make the following work
Algebras(GF(9))(GF(81), morphism=my_morhpism)
comment:29 Changed 3 years ago by
The main objection by @caruso, and the reason for the code he wrote, was that most on the interface, and some algorithms, can also be useful for noncommutative algebras.
He is especially interested in "skew algebras". Citing @caruso:
The point is that I really want to have algebras_from_morphisms_which_are_not_coercion_maps and I think that implementing the action of scalars (through the defining morphism) is the least we can do.
comment:30 Changed 2 years ago by
 Branch changed from u/defeo/21413/class_ring_extension to u/caruso/21413/class_ring_extension
comment:31 Changed 2 years ago by
 Commit changed from 5c1c5b680fe08406fc6d34ccdddca13ee695ab78 to 656ec777d4030fffa17a65f85c4cce87ca7d289e
Branch pushed to git repo; I updated commit sha1. New commits:
656ec77  Small fixes

comment:32 followup: ↓ 33 Changed 15 months ago by
 Status changed from needs_info to needs_work
I inexplicably got remotivated to revive and work on this, despite its marathon discussion and open questions. I'll try to summarise the design problems we are facing along with solution proposals in the following.
Naming: Of the now many suggestions, I really like that the algebra L/K
could be obtained from K.extension_algebra(L)
. AlgebraWithMorphism
should
not be exposed in the global namespace since it is too abstract to have any
useful functionality in itself.
The commutativity issue: The issue is that in the current proposal, if A = L/K
uses a defining map phi
which is _not_ the coercion map of K
in L
, then
k*a == phi(k)*a
, while a*k == a*L(k)
. This could cause confusion for users,
but also developers since the class of A
currently derives from
CommutativeAlgebra
(In A
we do guarantee that a1 * a2 = a2 * a1
)
It has been suggested to let *
be commutative and mean k * a = a * k = a * L(k)
, and introduce a new operator for phi(k) * a
. I propose using the
binaryand operator for this purpose, &
, and hence
k & a = a & k = phi(k) * a = a * phi(k) = A(k) * a = a * A(k)
The issue with L.algebra
: The issue is that there is an existing method
L.algebra(K)
, which does something different from what we want. One way to alleviate confusion suggested by Simon is to introduce the methodL.as_algebra_over(K)
. I see no reason why we could not have both this as well asK.extension_algebra(L)
.
Writing GF(q^m)/GF(q)
in this ticket: I still advocate that we should write a
(barebone) implementation of this particular ring extension in this ticket. We need to see the abstract class in action to properly judge whether the design is at least not crazy.
comment:33 in reply to: ↑ 32 Changed 15 months ago by
Replying to jsrn:
Writing
GF(q^m)/GF(q)
in this ticket: I still advocate that we should write a(barebone) implementation of this particular ring extension in this ticket. We need to see the abstract class in action to properly judge whether the design is at least not crazy.
Actually I have a plan to remove the experimental RelativeFiniteFieldExtension
module from the coding section of Sage, right after the cleanup ticket #27634. For one thing, the module is illplaced. For another, codes can live without it  I checked this.
By the way, welcome back Johan!
comment:34 Changed 13 months ago by
 Keywords padicBordeaux added
comment:35 Changed 13 months ago by
 Branch changed from u/caruso/21413/class_ring_extension to u/roed/21413/class_ring_extension
comment:36 Changed 13 months ago by
 Branch changed from u/roed/21413/class_ring_extension to u/caruso/21413/class_ring_extension
comment:37 Changed 13 months ago by
 Commit changed from 656ec777d4030fffa17a65f85c4cce87ca7d289e to ee0e0745a839dd9fc9cf2fae23f5245ef8fb1b86
Branch pushed to git repo; I updated commit sha1. New commits:
ee0e074  Rewrite documentation and fix bugs

comment:38 Changed 13 months ago by
 Commit changed from ee0e0745a839dd9fc9cf2fae23f5245ef8fb1b86 to a785d8d8545f29620788d4c29f7ac9ef9996f257
Branch pushed to git repo; I updated commit sha1. New commits:
a785d8d  Fix bug in coercion

comment:39 Changed 13 months ago by
 Commit changed from a785d8d8545f29620788d4c29f7ac9ef9996f257 to 631f2281d11b602215cb9ba494b67023fd2d922c
comment:40 Changed 13 months ago by
 Commit changed from 631f2281d11b602215cb9ba494b67023fd2d922c to 07481dd4cb67027b44eb89eb24efef37da5bdc72
Branch pushed to git repo; I updated commit sha1. New commits:
07481dd  Ring extensions with basis

comment:41 Changed 13 months ago by
 Commit changed from 07481dd4cb67027b44eb89eb24efef37da5bdc72 to 22d7f4d50143d50c452983f70052375de439b35d
Branch pushed to git repo; I updated commit sha1. New commits:
22d7f4d  add class RingExtensionWithGen

comment:42 Changed 13 months ago by
 Commit changed from 22d7f4d50143d50c452983f70052375de439b35d to 2566db5c6d5b4e65fa074d4148685725033db02c
Branch pushed to git repo; I updated commit sha1. New commits:
2566db5  Make things relative

comment:43 Changed 13 months ago by
 Commit changed from 2566db5c6d5b4e65fa074d4148685725033db02c to 6fc7e5fa1691e9a9827143fd03ca2893ffc78199
Branch pushed to git repo; I updated commit sha1. New commits:
6fc7e5f  move code and rename classes

comment:44 Changed 13 months ago by
 Commit changed from 6fc7e5fa1691e9a9827143fd03ca2893ffc78199 to 81e4a22cb6a554a7417dc081915ea82013001854
Branch pushed to git repo; I updated commit sha1. New commits:
81e4a22  check arguments for finite free ring extensions

comment:45 Changed 13 months ago by
is_finite
should not return True
btw as this is about cardinality.
comment:46 Changed 13 months ago by
It appears that your homs cannot handle generators?
The following happens in the new finite field code:
sage: GF(3^2).extension(3, absolute=False)._any_embedding(GF(3^12))
produces
if codomain.has_coerce_map_from(self): File "sage/structure/parent.pyx", line 1969, in sage.structure.parent.Parent.has_coerce_map_from (build/cythonized/sage/structure/parent.c:16392) cpdef bint has_coerce_map_from(self, S) except 2: File "sage/structure/parent.pyx", line 1991, in sage.structure.parent.Parent.has_coerce_map_from (build/cythonized/sage/structure/parent.c:16343) return self._internal_coerce_map_from(S) is not None File "sage/structure/parent.pyx", line 2133, in sage.structure.parent.Parent._internal_coerce_map_from (build/cythonized/sage/structure/parent.c:17274) mor = self.discover_coerce_map_from(S) File "sage/structure/parent.pyx", line 2270, in sage.structure.parent.Parent.discover_coerce_map_from (build/cythonized/sage/structure/parent.c:17722) user_provided_mor = self._coerce_map_from_(S) File "sage/rings/finite_rings/finite_field_base.pyx", line 1334, in sage.rings.finite_rings.finite_field_base.FiniteField._coerce_map_from_ (build/cythonized/sage/rings/finite_rings/finite_field_base.c:15164) return R.hom((self.gen() ** ((self.order()  1)//(R.order()  1)),)) File "sage/structure/parent_gens.pyx", line 291, in sage.structure.parent_gens.ParentWithGens.hom (build/cythonized/sage/structure/parent_gens.c:3689) return parent.Parent.hom(self, im_gens, codomain, base_map=base_map, category=category, check=check) File "sage/structure/parent.pyx", line 1363, in sage.structure.parent.Parent.hom (build/cythonized/sage/structure/parent.c:11767) return self.Hom(codomain, **Hom_kwds)(im_gens, **kwds) File "/projects/ab5d7b52043348839a36a20aa7103d52/sage/local/lib/python2.7/sitepackages/sage/rings/ring_extension_homset.py", line 7, in __call__ return RingExtensionHomomorphism(self, *args, **kwargs) File "sage/rings/ring_extension_morphism.pyx", line 74, in sage.rings.ring_extension_morphism.RingExtensionHomomorphism.__init__ (build/cythonized/sage/rings/ring_extension_morphism.c:4992) backend = backend_morphism(backend) File "sage/rings/ring_extension_morphism.pyx", line 33, in sage.rings.ring_extension_morphism.backend_morphism (build/cythonized/sage/rings/ring_extension_morphism.c:3757) g = _backend_morphism(f) File "sage/rings/ring_extension_morphism.pyx", line 22, in sage.rings.ring_extension_morphism._backend_morphism (build/cythonized/sage/rings/ring_extension_morphism.c:3355) if not isinstance(f.domain(), RingExtension_class) and not isinstance(f.codomain(), RingExtension_class): AttributeError: 'list' object has no attribute 'domain'
where any_embedding
looks like this:
def _any_embedding(self, codomain): if codomain.has_coerce_map_from(self): return codomain.coerce_map_from(self) base_hom = self.base_ring()._any_embedding(codomain) minpoly = self.gen().minpoly().change_ring(base_hom) return self.hom(codomain, [minpoly.any_root()], base_map=base_hom)
Here is some more info about this:
sage: k = GF(3^2).extension(3, absolute=False) sage: l = GF(3^12) sage: k._defining_morphism Ring morphism: From: Finite Field in z2 of size 3^2 To: Finite Field in b729 of size 3^6 Defn: z2 > 2*b729^5 + 2*b729^3 + b729^2 + 2*b729 + 2 sage: l.has_coerce_map_from(k) *boom*
comment:47 Changed 13 months ago by
Also, it seems that you want to make this change to ignore any check here
diff git a/src/sage/rings/ring_extension_morphism.pyx b/src/sage/rings/ring_extension_morphism.pyx index 3028d763ec..644273ddd3 100644  a/src/sage/rings/ring_extension_morphism.pyx +++ b/src/sage/rings/ring_extension_morphism.pyx @@ 63,7 +63,7 @@ cdef class RingExtensionHomomorphism(RingHomomorphism): sage: E2 = RingExtension(L,K) """  def __init__(self, parent, backend): + def __init__(self, parent, backend, check=None): RingHomomorphism.__init__(self, parent) backend_domain = self.domain() if isinstance(backend_domain, RingExtension_class):
comment:48 Changed 13 months ago by
I think that RingExtension_class
shouldn't be a UniqueRepresentation
. Instead RingExtension
should be a factory. Otherwise, I probably can't inherit from RingExtension_class
for classes that are served through a UniqueFactory
.
comment:49 Changed 13 months ago by
Working on padic extensions with this I am now stuck at this that I cannot make much sense of.
Go to https://gitlabhooksflau3jeazaew.a.run.app/status/dev/branch/generalextensions click "Launch Binder" and type in
L.<a> = Qp(2).extension(x)
to get
/projects/ab5d7b52043348839a36a20aa7103d52/sage/local/lib/python2.7/sitepackages/sage/rings/ring_extension.pyc in __init__(self, defining_morphism, basis, names, coerce, check) 616 def __init__(self, defining_morphism, basis, names=None, coerce=False, check=True): 617 RingExtension_class.__init__(self, defining_morphism, coerce) > 618 self._basis = [ self(b) for b in basis ] 619 if names is None: 620 names = [ ] /projects/ab5d7b52043348839a36a20aa7103d52/sage/local/lib/python2.7/sitepackages/sage/structure/parent.pyx in sage.structure.parent.Parent.__call__ (build/cythonized/sage/structure/parent.c:9203)() 898 if mor is not None: 899 if no_extra_args: > 900 return mor._call_(x) 901 else: 902 return mor._call_with_args(x, args, kwds) /projects/ab5d7b52043348839a36a20aa7103d52/sage/local/lib/python2.7/sitepackages/sage/rings/ring_extension_morphism.pyx in sage.rings.ring_extension_morphism.RingExtensionHomomorphism._call_ (build/cythonized/sage/rings/ring_extension_morphism.c:5278)() 85 if isinstance(self.domain(), RingExtension_class): 86 x = x._backend() > 87 y = self._backend_morphism(x) 88 if isinstance(self.codomain(), RingExtension_class): 89 y = self._codomain(y) /projects/ab5d7b52043348839a36a20aa7103d52/sage/local/lib/python2.7/sitepackages/sage/categories/map.pyx in sage.categories.map.Map.__call__ (build/cythonized/sage/categories/map.c:6517)() 771 if P is D: # we certainly want to call _call_/with_args 772 if not args and not kwds: > 773 return self._call_(x) 774 return self._call_with_args(x, args, kwds) 775 # Is there coercion? /projects/ab5d7b52043348839a36a20aa7103d52/sage/local/lib/python2.7/sitepackages/sage/rings/morphism.pyx in sage.rings.morphism.RingHomomorphism_im_gens._call_ (build/cythonized/sage/rings/morphism.c:9428)() 1285 2*x + 3*y + 2*z 1286 """ > 1287 return x._im_gens_(self.codomain(), self.im_gens(), base_map=self.base_map()) 1288 1289 /projects/ab5d7b52043348839a36a20aa7103d52/sage/local/lib/python2.7/sitepackages/sage/structure/element.pyx in sage.structure.element.Element._im_gens_ (build/cythonized/sage/structure/element.c:5592)() 615 tuple of elements of im_gens. 616 """ > 617 raise NotImplementedError 618 619 cpdef base_extend(self, R): NotImplementedError:
comment:50 Changed 13 months ago by
 Commit changed from 81e4a22cb6a554a7417dc081915ea82013001854 to 0433a1a3b46ef70fc7a958ad743c03a634aff865
Branch pushed to git repo; I updated commit sha1. New commits:
c99fa82  morphisms between RingExtensions now support im_gens

d4a35ac  Add base_map to homomorphisms defined by images of generators

1f78dd4  Fix some doctests

84704ba  Fix doctests and py3, incorporate small reviewer suggestion

6a52519  Merge branch 't/26105/26105_base_hom' into t/21413/21413/class_ring_extension

0433a1a  more work on morphisms

comment:51 Changed 13 months ago by
 Dependencies set to #26105
comment:52 Changed 13 months ago by
 Commit changed from 0433a1a3b46ef70fc7a958ad743c03a634aff865 to e933a5d8dfb38f2fffdad7ba6c459a53b3f417ef
Branch pushed to git repo; I updated commit sha1. New commits:
e933a5d  write a factory

comment:53 Changed 13 months ago by
I think we should change this:
/projects/ab5d7b52043348839a36a20aa7103d52/sage/local/lib/python2.7/sitepackages/sage/rings/ring_extension.py(699)__init__() 697 RingExtensionWithBasis.__init__(self, defining_morphism, basis, names, coerce, check) 698 except ValueError: > 699 raise ValueError("the given element is not a generator")
The actual error was: *** ValueError: too many values to unpack
. Essentially a syntax error that now manifested in that strange way.
We probably do not want to catch at all here but instead add a comment in the line above RingExtensionWithBasis.__init__(…)
that says something like if you see a ValueError here, gen is probably not a generator
.
comment:54 Changed 13 months ago by
You might want to cherry pick these two commits:
(or just manually copy them over.)
comment:55 Changed 13 months ago by
 Commit changed from e933a5d8dfb38f2fffdad7ba6c459a53b3f417ef to ed7c7b69c8ebad23f56d4cc060df636ca3466e37
Branch pushed to git repo; I updated commit sha1. New commits:
ed7c7b6  fix variable_name(s)

comment:56 Changed 13 months ago by
We worked with David Roe and Julian Rüth on this ticket this week and finally decided to follow a different approach. We defined a coercion map from K
to the extension A = L/K
(coming from the defining morphism) but no coercion map from A
to L
(except when K
coerces to L
through the defining morphism of the extension). Consequently a*k
is always the same as k*a
(and is equal to phi(k)*a
where phi
is the defining morphism) but differs from l*k
.
This point of view looked good to us because, in the use cases we have in mind (typically implementing field towers), the defining morphisms are basically never coercion maps but we definitely don't want to use the @
operator to perform multiplications in the tower.
We also implemented special classes for finite field extensions. Below is a short demo showing the capabilities provided by this ticket.
We first create several a bunch of number fields and define a tower of extension QQ > AA > BB > CC
. (Currently, the tower is not that easy to define because we still miss a good extension
method; we will implement it soon, hopefully.)
sage: A.<a> = QQ.extension(x^2  2) sage: B.<b> = QQ.extension(x^4  2) sage: C.<c> = QQ.extension(x^12  2) # We create extensions sage: AA.<a> = RingExtension(QQ) sage: f = Hom(AA,B)(A.hom([b^2])) sage: BB.<b> = RingExtension(f) sage: g = Hom(BB,C)(B.hom([c^3])) sage: CC.<c> = RingExtension(g)
Now we have our tower QQ > AA > BB > CC
. Let's play with it.
sage: AA Ring in a with defining polynomial x^2  2 over its base sage: BB Ring in b with defining polynomial x^2  a over its base sage: CC Ring in c with defining polynomial x^3  b over its base sage: CC.base_field() Ring in b with defining polynomial x^2  a over its base sage: CC.base_field() is BB True sage: BB.base_field() is AA True sage: CC.intermediate_rings() [Ring in c with defining polynomial x^3  b over its base, Ring in b with defining polynomial x^2  a over its base, Ring in a with defining polynomial x^2  2 over its base, Number Field in void with defining polynomial x] sage: CC.gens() (c,)
The gens
method has also a relative version
sage: CC.gens(AA) # generators over AA (c,b) sage: CC.gens(QQ) (c,b,a)
And also:
sage: CC.basis() [1, c, c^2] sage: CC.basis(AA) [1, c, c^2, b, b*c, b*c^2] sage: CC.basis(QQ) [1, c, c^2, b, b*c, b*c^2, a, a*c, a*c^2, a*b, a*b*c, a*b*c^2]
Now let's play with elements
sage: u = CC.random_element(); u ((1/2 + 2*a)  31*b) + (2 + (1 + 1/2*a)*b)*c + ((5/2  1/2*a) + 3*b)*c^2 sage: u.trace() # trace over the base field BB (3/2 + 6*a)  93*b sage: u.norm() (95447/8  5353/8*a) + (2443/4  115345/4*a)*b sage: u.matrix() [ (1/2 + 2*a)  31*b 2 + (1 + 1/2*a)*b (5/2  1/2*a) + 3*b] [3*a + (5/2  1/2*a)*b (1/2 + 2*a)  31*b 2 + (1 + 1/2*a)*b] [ (1 + a) + 2*b 3*a + (5/2  1/2*a)*b (1/2 + 2*a)  31*b] sage: u.polynomial() ((5/2  1/2*a) + 3*b)*x^2 + (2 + (1 + 1/2*a)*b)*x + (1/2 + 2*a)  31*b sage: u.polynomial()(c) == u True
Similarly, all the above functions have relative versions
sage: u.trace(QQ) 6 sage: u.trace().trace().trace() == u.trace(QQ) True sage: u.matrix(AA) [ 1/2 + 2*a 2 5/2  1/2*a 31 1 + 1/2*a 3] [ 3*a 1/2 + 2*a 2 5/2  1/2*a 31 1 + 1/2*a] [ 1 + a 3*a 1/2 + 2*a 2 5/2  1/2*a 31] [ 31*a 1 + a 3*a 1/2 + 2*a 2 5/2  1/2*a] [ 1 + 5/2*a 31*a 1 + a 3*a 1/2 + 2*a 2] [ 2*a 1 + 5/2*a 31*a 1 + a 3*a 1/2 + 2*a] sage: P = u.polynomial(QQ); P 3*x0^2*x1  1/2*x0^2*x2 + 1/2*x0*x1*x2 + 5/2*x0^2 + x0*x1 + 2*x0  31*x1 + 2*x2  1/2 sage: P(c,b,a) == u # (c,b,a) are the generators of CC over QQ True
comment:57 Changed 13 months ago by
 Commit changed from ed7c7b69c8ebad23f56d4cc060df636ca3466e37 to f625e62b862c191ddb0f8824c9b8d9d53920b598
Branch pushed to git repo; I updated commit sha1. New commits:
7d88f9a  Working on padic free module isomorphisms

f4f17d6  Fix precision problem in vector space maps by using new method _polynomial_list

23947e9  Working on vector_space and free_module

8db48a2  Reviewer suggestions

79f2458  One more Returns

9313b2c  Adjust comment

ad98d9c  Address reviewer comments

8615a3d  Merge branch 't/28481/free_module' into t/21413/21413/class_ring_extension

9faeb90  Fix small bugs

f625e62  make free_module in number fields cooler

comment:58 Changed 13 months ago by
 Dependencies changed from #26105 to #26105, #28481
comment:59 Changed 13 months ago by
 Commit changed from f625e62b862c191ddb0f8824c9b8d9d53920b598 to 8dcf14910e8fe9282795ec9a01d849012b7939d8
Branch pushed to git repo; I updated commit sha1. New commits:
8dcf149  implement fraction_field and fix division

comment:60 Changed 13 months ago by
 Commit changed from 8dcf14910e8fe9282795ec9a01d849012b7939d8 to eacadf68fe36556b10911010b758bef1eed90128
Branch pushed to git repo; I updated commit sha1. Last 10 new commits:
1738aa9  Fix some doctests, remove category keywords from doctests

d0e0953  Add base_map to finite_field homsets

16feb8d  Fix some errors with positional check arguments

c48e142  Fix pyflakes

aa84741  Fix some doctests

1ec3234  Merge branch 'u/roed/26105_base_hom' of git://trac.sagemath.org/sage into t/21413/21413/class_ring_extension

a76340a  Replace vector_space by free_module

ae19c87  improve _repr_

dd9abe7  small change in the behaviour of defining_morphism()

eacadf6  more on morphisms between ring extensions

comment:61 Changed 12 months ago by
 Commit changed from eacadf68fe36556b10911010b758bef1eed90128 to 7c5871a237c53d5c31e791a2b99b34f89fb5bfe8
comment:62 Changed 12 months ago by
 Commit changed from 7c5871a237c53d5c31e791a2b99b34f89fb5bfe8 to 69a15b4d5e170e392ab36be37f4fcc93edcc43f7
comment:63 Changed 12 months ago by
 Commit changed from 69a15b4d5e170e392ab36be37f4fcc93edcc43f7 to b18a10a13a61be72789ca2ccee8d220d1a1eb4fb
Branch pushed to git repo; I updated commit sha1. New commits:
b18a10a  cythonize and try to emulate inheritance (backend > extension)

comment:64 Changed 12 months ago by
 Commit changed from b18a10a13a61be72789ca2ccee8d220d1a1eb4fb to 45b8e6a1f31da87e22458b5ac6bf639884a18f74
comment:65 Changed 12 months ago by
 Commit changed from 45b8e6a1f31da87e22458b5ac6bf639884a18f74 to acd9e3b8c630b479987d6e7700a837c496015ef8
Branch pushed to git repo; I updated commit sha1. New commits:
acd9e3b  accelerate arithmetic operators

comment:66 Changed 12 months ago by
 Commit changed from acd9e3b8c630b479987d6e7700a837c496015ef8 to 9110c59197a873fa2ea2139f1c75d6cb26c71dba
Branch pushed to git repo; I updated commit sha1. New commits:
9110c59  typo

comment:67 Changed 12 months ago by
 Commit changed from 9110c59197a873fa2ea2139f1c75d6cb26c71dba to 6ad8f804ef730906151651a151a09638ef5718b4
Branch pushed to git repo; I updated commit sha1. New commits:
6ad8f80  Fix small bug in fraction field creation

comment:68 Changed 12 months ago by
 Commit changed from 6ad8f804ef730906151651a151a09638ef5718b4 to d5ffbd06fd9b349b277229c9b410f12b129ddc0a
comment:69 Changed 12 months ago by
 Commit changed from d5ffbd06fd9b349b277229c9b410f12b129ddc0a to b27c311b1f67c23ecf5b06b6c1b5abbce30af7ca
Branch pushed to git repo; I updated commit sha1. Last 10 new commits:
3d73776  Fixing Lie algebra morphisms

72b677c  change_ring > map_coefficients and fix composition of morphisms defined by images of generators

a62a47c  Merge branch 'u/roed/26105_base_hom' of git://trac.sagemath.org/sage into base_hom

5324a83  Merge branch 'develop' into base_hom

d780c6f  Change base_map so that the codomain is always the codomain of the map

2f526f8  Merge branch 'u/roed/26105_base_hom' of git://trac.sagemath.org/sage into base_hom

bfcbebe  Fix bug in composition

3705163  Merge branch 'u/roed/26105_base_hom' of git://trac.sagemath.org/sage into base_hom

e056cd3  Merge branch 'base_hom' into ring_extension

b27c311  better heuristic to compute generators (over some base)

comment:70 Changed 12 months ago by
 Commit changed from b27c311b1f67c23ecf5b06b6c1b5abbce30af7ca to 990b2318899cd5c2c2e2b8ae4376f1329242f898
comment:71 Changed 12 months ago by
 Dependencies changed from #26105, #28481 to #26105
 Status changed from needs_work to needs_review
comment:72 Changed 12 months ago by
 Commit changed from 990b2318899cd5c2c2e2b8ae4376f1329242f898 to 80bdcd66a5443b5804b165dc2c7c2598358fc1b9
Branch pushed to git repo; I updated commit sha1. New commits:
80bdcd6  add one doctest

comment:73 Changed 12 months ago by
 Commit changed from 80bdcd66a5443b5804b165dc2c7c2598358fc1b9 to 3cd20d85cadb25252c6de4d25afa7650943af568
Branch pushed to git repo; I updated commit sha1. New commits:
3cd20d8  typo

comment:74 Changed 12 months ago by
 Commit changed from 3cd20d85cadb25252c6de4d25afa7650943af568 to 8acb01923a727fa5031d67082727d95cefb6916a
comment:75 Changed 12 months ago by
 Description modified (diff)
See the description of the ticket for a small tutorial showing the main functionalities provided by this ticket.
comment:76 Changed 12 months ago by
 Commit changed from 8acb01923a727fa5031d67082727d95cefb6916a to 1c76d15702b70b7b3bdaa665af655fb720ef7a74
Branch pushed to git repo; I updated commit sha1. New commits:
1c76d15  small fixes

comment:77 Changed 11 months ago by
 Branch changed from u/caruso/21413/class_ring_extension to u/roed/21413/class_ring_extension
comment:78 Changed 11 months ago by
 Commit changed from 1c76d15702b70b7b3bdaa665af655fb720ef7a74 to cde6ef9f5c3e1ea3dc2613a318f010265b11c6c5
Branch pushed to git repo; I updated commit sha1. New commits:
cde6ef9  A few more whitespace changes

comment:79 Changed 11 months ago by
 Branch changed from u/roed/21413/class_ring_extension to u/caruso/21413/class_ring_extension
comment:80 Changed 11 months ago by
 Commit changed from cde6ef9f5c3e1ea3dc2613a318f010265b11c6c5 to 647b677b71dc895dd2756f4f6e28de840e40b881
 Milestone changed from sage7.4 to sage9.0
comment:82 Changed 11 months ago by
Patchbot reported many errors of this shape:
Failed example: type(K) Expected: <class 'sage.rings.ring_extension.RingExtensionWithGen'> Got: <type 'sage.rings.ring_extension.RingExtensionWithGen'>
This sounds weird.
Actually, on my laptop, the output I get is class
and not type
. Moreover, I noticed the same ambiguity in many other places in Sage. Even more bizarre, sometimes type
appears in the doctest, my output is class
but no error is reported.
Do you know what's going on here?
comment:83 Changed 11 months ago by
 Commit changed from 647b677b71dc895dd2756f4f6e28de840e40b881 to 1ee7798bf12ea64b43c0f92e42c35f285c356c19
comment:84 Changed 11 months ago by
Python2 versus python3. You are supposed to use python3 for development..
comment:85 Changed 11 months ago by
OK. So does it mean that I should keep class
as it is currently?
comment:86 Changed 11 months ago by
You should do whatever it takes to have doctests pass in both py2 and py3.
Here this can be achieved by writing ...
instead of type or class.
There is also an existing mechanism in the doctest framework that accepts "class" when "type" is required. The other direction has not been implemented. So you can use "type".
comment:87 Changed 11 months ago by
 Commit changed from 1ee7798bf12ea64b43c0f92e42c35f285c356c19 to e87e6f27299aca3931bb76db7270178d64b6bef5
Branch pushed to git repo; I updated commit sha1. New commits:
e87e6f2  class > type

comment:88 Changed 11 months ago by
 Commit changed from e87e6f27299aca3931bb76db7270178d64b6bef5 to 0b4882577644c58a0e0c218e5e5b701e1106a3f9
Branch pushed to git repo; I updated commit sha1. New commits:
0b48825  remove generic_power

comment:89 Changed 11 months ago by
Reste encore un problème sous python2:
sage t long src/sage/rings/ring_extension_homset.py ********************************************************************** File "src/sage/rings/ring_extension_homset.py", line 26, in sage.rings.ring_extension_homset.RingExtensionHomset Failed example: type(H) Expected: <type 'sage.rings.ring_extension_homset.RingExtensionHomset_with_category'> Got: <class 'sage.rings.ring_extension_homset.RingExtensionHomset_with_category'>
qui me semble bizarre. Il devrait être réglé comme les autres par le mécanisme dont j'ai parlé. Utiliser ...
pour celuila, peutêtre ?
comment:90 Changed 11 months ago by
 Commit changed from 0b4882577644c58a0e0c218e5e5b701e1106a3f9 to e5b7033b83d1e89af7750d7e6697bbbd5a931c85
Branch pushed to git repo; I updated commit sha1. New commits:
e5b7033  replace type by ellipsis

comment:91 Changed 11 months ago by
All tests pass!
comment:93 Changed 11 months ago by
Mumble... build failed with sage 9.0.beta6
Here is the error:
[sagelib9.0.beta6] Traceback (most recent call last): [sagelib9.0.beta6] File "setup.py", line 22, in <module> [sagelib9.0.beta6] import fpickle_setup [sagelib9.0.beta6] File "/local/sagepatchbot/sage/src/fpickle_setup.py", line 8, in <module> [sagelib9.0.beta6] from six.moves import copyreg [sagelib9.0.beta6] ModuleNotFoundError: No module named 'six'
I would say that it is not related to this ticket, is it?
comment:94 Changed 11 months ago by
caused by the switch to python3. You need to do "make distclean" and "make"
comment:95 Changed 11 months ago by
Well, this error was reported (4 times) by the patchbot; it is normal?
comment:96 Changed 11 months ago by
As explained on sagedevel, all patchbots were broken by the switch to python3
comment:97 Changed 10 months ago by
 Status changed from positive_review to needs_work
PDF docs don't build
! Undefined control sequence. l.7333 \(K_n/\cots \K_2/K_1\) is the ring \(K_1\).
comment:98 Changed 10 months ago by
 Commit changed from e5b7033b83d1e89af7750d7e6697bbbd5a931c85 to 0c284f39331259a9888fc60230118eaf285999f0
Branch pushed to git repo; I updated commit sha1. New commits:
0c284f3  typo

comment:100 Changed 10 months ago by
 Commit changed from 0c284f39331259a9888fc60230118eaf285999f0 to 0354850a40be44f74ddac18401c12adc02877f2e
Branch pushed to git repo; I updated commit sha1. New commits:
0354850  make one doctest more compliant...

comment:101 Changed 10 months ago by
 Status changed from needs_review to positive_review
I checked that the documentation builds now.
comment:102 Changed 10 months ago by
 Status changed from positive_review to needs_work
pdf docs don't build:
[docpdf] ! Undefined control sequence. [docpdf] <recently read> \K [docpdf] [docpdf] l.7333 \(K_n/\cdots\K [docpdf] _2/K_1\) is the ring \(K_1\). [docpdf] ?
comment:103 Changed 10 months ago by
 Commit changed from 0354850a40be44f74ddac18401c12adc02877f2e to 7356a2aafc735e0717e36659589b9adc7b9c14d9
comment:104 Changed 10 months ago by
 Status changed from needs_work to needs_review
Should be OK this time...
comment:105 Changed 9 months ago by
 Milestone changed from sage9.0 to sage9.1
Ticket retargeted after milestone closed
comment:106 Changed 9 months ago by
David, if my changes are okay with you, could you please give (again) a positive review to this ticket?
comment:107 Changed 9 months ago by
 Commit changed from 7356a2aafc735e0717e36659589b9adc7b9c14d9 to a7a6fa80638442e8d85e26ca54d967c9ee5801a7
Branch pushed to git repo; I updated commit sha1. New commits:
a7a6fa8  Merge branch 'develop' into ring_extension

comment:108 Changed 9 months ago by
 Reviewers changed from David Roe to David Roe, Frédéric Chapoton
 Status changed from needs_review to positive_review
ok, let it be
comment:109 Changed 9 months ago by
Thanks.
BTW, do you know why some patchbots report building errors?
comment:110 Changed 9 months ago by
 Status changed from positive_review to needs_work
I'm getting a lot of failures like this on 32bit
********************************************************************** File "src/sage/categories/commutative_rings.py", line 156, in sage.categories.commutative_rings.CommutativeRings.ParentMethods.over Failed example: L = GF(5^12).over(K) Exception raised: Traceback (most recent call last): File "/var/lib/buildbot/slave/sage_git/build/local/lib/python3.7/sitepackages/sage/doctest/forker.py", line 681, in _run self.compile_and_execute(example, compiler, test.globs) File "/var/lib/buildbot/slave/sage_git/build/local/lib/python3.7/sitepackages/sage/doctest/forker.py", line 1123, in compile_and_execute exec(compiled, globs) File "<doctest sage.categories.commutative_rings.CommutativeRings.ParentMethods.over[17]>", line 1, in <module> L = GF(Integer(5)**Integer(12)).over(K) File "/var/lib/buildbot/slave/sage_git/build/local/lib/python3.7/sitepackages/sage/categories/commutative_rings.py", line 212, in over return RingExtension(self, base, gens, names) File "sage/structure/factory.pyx", line 369, in sage.structure.factory.UniqueFactory.__call__ (build/cythonized/sage/structure/factory.c:2240) return self.get_object(version, key, kwds) File "sage/structure/factory.pyx", line 406, in sage.structure.factory.UniqueFactory.get_object (build/cythonized/sage/structure/factory.c:2444) return self._cache[version, cache_key] File "sage/misc/weak_dict.pyx", line 703, in sage.misc.weak_dict.WeakValueDictionary.__getitem__ (build/cythonized/sage/misc/weak_dict.c:3650) cdef PyObject* wr = PyDict_GetItemWithError(self, k) File "sage/categories/morphism.pyx", line 323, in sage.categories.morphism.Morphism.__hash__ (build/cythonized/sage/categories/morphism.c:4888) return hash((domain, codomain, definition)) File "sage/rings/ring_extension.pyx", line 696, in sage.rings.ring_extension.RingExtension_generic.__hash__ (build/cythonized/sage/rings/ring_extension.c:10685) return id(self) OverflowError: Python int too large to convert to C ssize_t **********************************************************************
comment:111 Changed 9 months ago by
using id(self) for the hash may be a bad idea
comment:112 followup: ↓ 113 Changed 9 months ago by
We can certainly fix that problem, but neither Xavier nor I have access to a 32bit machine, so I'm not sure what other problems might arise.
comment:113 in reply to: ↑ 112 Changed 9 months ago by
Replying to roed:
We can certainly fix that problem, but neither Xavier nor I have access to a 32bit machine, so I'm not sure what other problems might arise.
just to mention that the access is now available :)
comment:114 Changed 8 months ago by
 Commit changed from a7a6fa80638442e8d85e26ca54d967c9ee5801a7 to c43507cd8a4f320690fa164c46f6f027b24c019a
comment:115 Changed 8 months ago by
I'm trying with the function hash_by_id
...
comment:116 Changed 8 months ago by
 Status changed from needs_work to needs_review
comment:117 Changed 8 months ago by
did you check on a 32bit machine ? If yes, you can set to positive on my name
comment:118 Changed 8 months ago by
 Status changed from needs_review to positive_review
I just ran make ptestlong
on a 32bit machine and they all passed. Setting back to positive review.
comment:119 Changed 8 months ago by
 Branch changed from u/caruso/21413/class_ring_extension to c43507cd8a4f320690fa164c46f6f027b24c019a
 Resolution set to fixed
 Status changed from positive_review to closed
comment:120 Changed 8 months ago by
 Commit c43507cd8a4f320690fa164c46f6f027b24c019a deleted
Champagne!
Branch pushed to git repo; I updated commit sha1. New commits:
Coercion system improved