4 | | sage: _ =var('A,B,C,D') |
5 | | sage: S = matrix([[1+3*A,3*B],[3*C,1+3*D]]) |
6 | | sage: R = Zmod(9) |
7 | | sage: g = matrix(R,2,[[2,1],[2,6]]) |
8 | | sage: gi = matrix(R,2,[[6,8],[7,2]]) |
9 | | sage: g*S*gi |
10 | | [ 6*B + 3*D + 1 3*A + 3*B + 6*C + 6*D] |
11 | | [ 0*A + 0*D 3*A + 0*D + 1] |
| 4 | sage: _ = var('A,B,C,D') |
| 5 | sage: (B + 3*D)*Zmod(9)(6) |
| 6 | 0*D |
13 | | |
14 | | While we have (look at the second line): |
15 | | |
16 | | {{{ |
17 | | sage: P.<A,B,C,D> = ZZ[] |
18 | | sage: S = matrix([[1+3*A,3*B],[3*C,1+3*D]]) |
19 | | sage: R = Zmod(9) |
20 | | sage: g = matrix(R,2,[[2,1],[2,6]]) |
21 | | sage: gi = matrix(R,2,[[6,8],[7,2]]) |
22 | | sage: g*S*gi |
23 | | [ 6*B + 3*D + 1 3*A + 3*B + 6*C + 6*D] |
24 | | [ 6*B 3*A + 3*B + 1] |
25 | | }}} |