Opened 7 years ago
Last modified 7 months ago
#17970 new defect
implement Meijer G function
Reported by: | rws | Owned by: | |
---|---|---|---|
Priority: | major | Milestone: | sage-8.4 |
Component: | symbolics | Keywords: | meijerg |
Cc: | slelievre | Merged in: | |
Authors: | Reviewers: | ||
Report Upstream: | N/A | Work issues: | |
Branch: | Commit: | ||
Dependencies: | Stopgaps: |
Description (last modified by )
This function would allow to express the result from differentiation of several special functions with respect to the order parameter, which at the moment gives an error:
sage: diff(exp_integral_e(n,x),n) NotImplementedError: The derivative of this function is only implemented for sage: gamma_inc(n,x).diff(n) D[0](gamma)(n, x) sage: sympy.expint(n, x).diff(n) -x**(n - 1)*meijerg(((), (1, 1)), ((0, 0, -n + 1), ()), x) sage: sympy.uppergamma(n, x).diff(n) meijerg(((), (1, 1)), ((0, 0, n), ()), x) + log(x)*uppergamma(n, x) sage: sympy.lowergamma(n, x).diff(n) -meijerg(((), (1, 1)), ((0, 0, n), ()), x) - log(x)*uppergamma(n, x) + gamma(n)*polygamma(0, n) sage: meijerg? Object `meijerg` not found. sage: laplace(cos(-1/t), t, s, algorithm='sympy') ... AttributeError: Unable to convert SymPy result (=meijerg(((), ()), ((-1/2, 0, 1/2), (0,)), s**2/16)/4) into Sage
Mpmath has numerics too.
https://en.wikipedia.org/wiki/Meijer_G-function
See also https://ask.sagemath.org/question/60006/meijer-g-function-in-sage/
Change History (6)
comment:1 Changed 7 years ago by
- Description modified (diff)
comment:2 Changed 4 years ago by
- Description modified (diff)
- Milestone changed from sage-6.6 to sage-8.3
comment:3 Changed 4 years ago by
- Milestone changed from sage-8.3 to sage-8.4
comment:4 Changed 8 months ago by
- Description modified (diff)
comment:5 Changed 8 months ago by
- Cc slelievre added
- Keywords meijerg added
The Meijer G function is mentioned in questions, answers, comments or discussions at:
- Ask Sage question 60006: Meijer G function in Sage
- Ask Sage question 48908: Avoid scientific notation in the Mathematica interface
- Ask Sage question 43392: Force 'sympy' backend for simplifying symbolic integrals
- Ask Sage question 42637: Error using algorithm="sympy" on an integral
- Ask Sage question 10724: Symbolic integration
- Ask Sage question 8634: Implement and plot meijerg
comment:6 Changed 7 months ago by
sage: integrate(x * bessel_Y(1, x), (x, 0 ,1), algorithm="sympy") --------------------------------------------------------------------------- AttributeError Traceback (most recent call last) /usr/lib/python3.10/site-packages/sage/interfaces/sympy.py in _sympysage_function_by_name(fname) 303 else: 304 # the function defined in sympy is not known in sage --> 305 raise AttributeError(fname) 306 return func 307 AttributeError: meijerg
Note: See
TracTickets for help on using
tickets.
update milestone 8.3 -> 8.4