| 11 | |

| 12 | Until then there is the following workaround: |

| 13 | {{{ |

| 14 | sage: from sympy.solvers.diophantine import * |

| 15 | sage: from sympy import sympify |

| 16 | sage: var('x,y,m') |

| 17 | (x, y, m) |

| 18 | sage: diop_solve(sympify(x**2 + y**2 - 5)) |

| 19 | {(-2, -1), (-2, 1), (2, -1), (2, 1)} |

| 20 | sage: diop_solve(sympify(x**2 - 3*y**2 - 1)) |

| 21 | {(-sqrt(3)*(-sqrt(3) + 2)**t/2 + (-sqrt(3) + 2)**t + sqrt(3)*(sqrt(3) + 2)**t/2 + (sqrt(3) + 2)**t, |

| 22 | -sqrt(3)*(-sqrt(3) + 2)**t/3 + (-sqrt(3) + 2)**t/2 + (sqrt(3) + 2)**t/2 + sqrt(3)*(sqrt(3) + 2)**t/3)} |

| 23 | }}} |