Opened 7 years ago
Closed 3 years ago
#15535 closed defect (fixed)
LinBox: you are running out of primes. 1000 coprime primes found
Reported by: | vbraun | Owned by: | |
---|---|---|---|
Priority: | major | Milestone: | sage-duplicate/invalid/wontfix |
Component: | linear algebra | Keywords: | random_fail |
Cc: | cpernet | Merged in: | |
Authors: | Reviewers: | ||
Report Upstream: | N/A | Work issues: | |
Branch: | Commit: | ||
Dependencies: | Stopgaps: |
Description
Old issue, but still happens ocassionally. See also #12883 and https://groups.google.com/d/topic/linbox-use/SgsXVYM7u7s/discussion
sage -t --long src/sage/modular/modform/ambient.py Timed out ********************************************************************** Tests run before process (pid=88588) timed out: sage: chi = DirichletGroup(25,QQ).0; chi ## line 13 ## Dirichlet character modulo 25 of conductor 5 mapping 2 |--> -1 sage: n = ModularForms(chi,2); n ## line 15 ## Modular Forms space of dimension 6, character [-1] and weight 2 over Rational Field sage: type(n) ## line 17 ## <class 'sage.modular.modform.ambient_eps.ModularFormsAmbient_eps_with_category'> sage: n.basis() ## line 22 ## [ 1 + O(q^6), q + O(q^6), q^2 + O(q^6), q^3 + O(q^6), q^4 + O(q^6), q^5 + O(q^6) ] sage: n.set_precision(20) ## line 34 ## sage: n.basis() ## line 35 ## [ 1 + 10*q^10 + 20*q^15 + O(q^20), q + 5*q^6 + q^9 + 12*q^11 - 3*q^14 + 17*q^16 + 8*q^19 + O(q^20), q^2 + 4*q^7 - q^8 + 8*q^12 + 2*q^13 + 10*q^17 - 5*q^18 + O(q^20), q^3 + q^7 + 3*q^8 - q^12 + 5*q^13 + 3*q^17 + 6*q^18 + O(q^20), q^4 - q^6 + 2*q^9 + 3*q^14 - 2*q^16 + 4*q^19 + O(q^20), q^5 + q^10 + 2*q^15 + O(q^20) ] sage: m = ModularForms(Gamma1(20),2,GF(7)) ## line 47 ## sage: loads(dumps(m)) == m ## line 48 ## True sage: m = ModularForms(GammaH(11,[4]), 2); m ## line 53 ## Modular Forms space of dimension 2 for Congruence Subgroup Gamma_H(11) with H generated by [4] of weight 2 over Rational Field sage: type(m) ## line 55 ## <class 'sage.modular.modform.ambient_g1.ModularFormsAmbient_gH_Q_with_category'> sage: m == loads(dumps(m)) ## line 57 ## True sage: sig_on_count() ## line 59 ## 0 sage: m = ModularForms(Gamma1(20),20); m ## line 102 ## Modular Forms space of dimension 238 for Congruence Subgroup Gamma1(20) of weight 20 over Rational Field sage: m.is_ambient() ## line 104 ## True sage: sig_on_count() ## line 106 ## 0 sage: m = ModularForms(Gamma1(20),100); m._repr_() ## line 127 ## 'Modular Forms space of dimension 1198 for Congruence Subgroup Gamma1(20) of weight 100 over Rational Field' sage: m.rename('A big modform space') ## line 132 ## sage: m ## line 133 ## A big modform space sage: m._repr_() ## line 135 ## 'Modular Forms space of dimension 1198 for Congruence Subgroup Gamma1(20) of weight 100 over Rational Field' sage: sig_on_count() ## line 137 ## 0 sage: m = ModularForms(Gamma0(20),2) ## line 151 ## sage: m._submodule_class() ## line 152 ## <class 'sage.modular.modform.submodule.ModularFormsSubmodule'> sage: sig_on_count() ## line 154 ## 0 sage: M = ModularForms(Gamma0(37),2) ## line 169 ## sage: M.basis() ## line 170 ## [ q + q^3 - 2*q^4 + O(q^6), q^2 + 2*q^3 - 2*q^4 + q^5 + O(q^6), 1 + 2/3*q + 2*q^2 + 8/3*q^3 + 14/3*q^4 + 4*q^5 + O(q^6) ] sage: M3 = M.change_ring(GF(3)) ## line 182 ## sage: M3.basis() ## line 183 ## [ 1 + q^3 + q^4 + 2*q^5 + O(q^6), q + q^3 + q^4 + O(q^6), q^2 + 2*q^3 + q^4 + q^5 + O(q^6) ] sage: sig_on_count() ## line 189 ## 0 sage: m = ModularForms(Gamma1(20),20) ## line 202 ## sage: m.dimension() ## line 203 ## 238 sage: sig_on_count() ## line 205 ## 0 sage: ModularForms(25, 6).hecke_module_of_level(5) ## line 220 ## Modular Forms space of dimension 3 for Congruence Subgroup Gamma0(5) of weight 6 over Rational Field sage: ModularForms(Gamma1(4), 3).hecke_module_of_level(8) ## line 222 ## Modular Forms space of dimension 7 for Congruence Subgroup Gamma1(8) of weight 3 over Rational Field sage: ModularForms(Gamma1(4), 3).hecke_module_of_level(9) ## line 224 ## sage: sig_on_count() ## line 228 ## 0 sage: ModularForms(22, 2)._degeneracy_raising_matrix(ModularForms(44, 2), 1) ## line 242 ## [ 1 0 -1 -2 0 0 0 0 0] [ 0 1 0 -2 0 0 0 0 0] [ 0 0 0 0 1 0 0 0 24] [ 0 0 0 0 0 1 0 -2 21] [ 0 0 0 0 0 0 1 3 -10] sage: ModularForms(22, 2)._degeneracy_raising_matrix(ModularForms(44, 2), 2) ## line 248 ## [0 1 0 0 0 0 0 0 0] [0 0 0 1 0 0 0 0 0] [0 0 0 0 1 0 0 0 0] [0 0 0 0 0 0 1 0 0] [0 0 0 0 0 0 0 1 0] sage: sig_on_count() ## line 254 ## 0 sage: m = ModularForms(Gamma0(20),4) ## line 272 ## sage: m.rank() ## line 273 ## 12 sage: m.dimension() ## line 275 ## 12 sage: sig_on_count() ## line 277 ## 0 sage: m = ModularForms(Gamma0(3),30) ## line 287 ## sage: m.ambient_space() is m ## line 288 ## True sage: sig_on_count() ## line 290 ## 0 sage: ModularForms(11).is_ambient() ## line 301 ## True sage: CuspForms(11).is_ambient() ## line 303 ## False sage: sig_on_count() ## line 305 ## 0 sage: S = ModularForms(11,2) ## line 315 ## sage: S.modular_symbols() ## line 316 ## Modular Symbols space of dimension 3 for Gamma_0(11) of weight 2 with sign 0 over Rational Field sage: S.modular_symbols(sign=1) ## line 318 ## Modular Symbols space of dimension 2 for Gamma_0(11) of weight 2 with sign 1 over Rational Field sage: S.modular_symbols(sign=-1) ## line 320 ## Modular Symbols space of dimension 1 for Gamma_0(11) of weight 2 with sign -1 over Rational Field sage: ModularForms(1,12).modular_symbols() ## line 325 ## Modular Symbols space of dimension 3 for Gamma_0(1) of weight 12 with sign 0 over Rational Field sage: sig_on_count() ## line 327 ## 0 sage: m = ModularForms(Gamma1(13),10) ## line 357 ## sage: m.free_module() ## line 358 ## Vector space of dimension 69 over Rational Field sage: ModularForms(Gamma1(13),4, GF(49,'b')).free_module() ## line 360 ## Vector space of dimension 27 over Finite Field in b of size 7^2 sage: M = ModularForms(Gamma1(57), 1); M ## line 367 ## Modular Forms space of dimension (unknown) for Congruence Subgroup Gamma1(57) of weight 1 over Rational Field sage: M.module() ## line 369 ## Vector space of dimension 36 over Rational Field sage: M.basis() ## line 371 ## sage: sig_on_count() ## line 375 ## 0 sage: ModularForms(37).free_module() ## line 402 ## Vector space of dimension 3 over Rational Field sage: sig_on_count() ## line 404 ## 0 sage: M = ModularForms(1,12, prec=3) ## line 421 ## sage: M.prec() ## line 422 ## 3 sage: M.basis() ## line 427 ## [ q - 24*q^2 + O(q^3), 1 + 65520/691*q + 134250480/691*q^2 + O(q^3) ] sage: M.prec(5) ## line 435 ## 5 sage: M.basis() ## line 437 ## [ q - 24*q^2 + 252*q^3 - 1472*q^4 + O(q^5), 1 + 65520/691*q + 134250480/691*q^2 + 11606736960/691*q^3 + 274945048560/691*q^4 + O(q^5) ] sage: sig_on_count() ## line 442 ## 0 sage: m = ModularForms(Gamma1(5),2) ## line 457 ## sage: m.set_precision(10) ## line 458 ## sage: m.basis() ## line 459 ## [ 1 + 60*q^3 - 120*q^4 + 240*q^5 - 300*q^6 + 300*q^7 - 180*q^9 + O(q^10), q + 6*q^3 - 9*q^4 + 27*q^5 - 28*q^6 + 30*q^7 - 11*q^9 + O(q^10), q^2 - 4*q^3 + 12*q^4 - 22*q^5 + 30*q^6 - 24*q^7 + 5*q^8 + 18*q^9 + O(q^10) ] sage: m.set_precision(5) ## line 465 ## sage: m.basis() ## line 466 ## [ 1 + 60*q^3 - 120*q^4 + O(q^5), q + 6*q^3 - 9*q^4 + O(q^5), q^2 - 4*q^3 + 12*q^4 + O(q^5) ] sage: sig_on_count() ## line 472 ## 0 sage: ModularForms(Gamma1(13)).cuspidal_submodule() ## line 486 ## Cuspidal subspace of dimension 2 of Modular Forms space of dimension 13 for Congruence Subgroup Gamma1(13) of weight 2 over Rational Field sage: sig_on_count() ## line 489 ## 0 sage: m = ModularForms(Gamma1(13),2); m ## line 502 ## Modular Forms space of dimension 13 for Congruence Subgroup Gamma1(13) of weight 2 over Rational Field sage: m.eisenstein_submodule() ## line 504 ## Eisenstein subspace of dimension 11 of Modular Forms space of dimension 13 for Congruence Subgroup Gamma1(13) of weight 2 over Rational Field sage: sig_on_count() ## line 506 ## 0 sage: m = ModularForms(Gamma0(33),2); m ## line 527 ## Modular Forms space of dimension 6 for Congruence Subgroup Gamma0(33) of weight 2 over Rational Field sage: m.new_submodule() ## line 529 ## Modular Forms subspace of dimension 1 of Modular Forms space of dimension 6 for Congruence Subgroup Gamma0(33) of weight 2 over Rational Field sage: M = ModularForms(17,4) ## line 534 ## sage: N = M.new_subspace(); N ## line 535 ## Modular Forms subspace of dimension 4 of Modular Forms space of dimension 6 for Congruence Subgroup Gamma0(17) of weight 4 over Rational Field sage: N.basis() ## line 537 ## [ q + 2*q^5 + O(q^6), q^2 - 3/2*q^5 + O(q^6), q^3 + O(q^6), q^4 - 1/2*q^5 + O(q^6) ] sage: ModularForms(12,4).new_submodule() ## line 547 ## Modular Forms subspace of dimension 1 of Modular Forms space of dimension 9 for Congruence Subgroup Gamma0(12) of weight 4 over Rational Field sage: sig_on_count() ## line 561 ## 0 sage: m = ModularForms(Gamma0(23),2); m ## line 594 ## Modular Forms space of dimension 3 for Congruence Subgroup Gamma0(23) of weight 2 over Rational Field sage: m.basis() ## line 596 ## [ q - q^3 - q^4 + O(q^6), q^2 - 2*q^3 - q^4 + 2*q^5 + O(q^6), 1 + 12/11*q + 36/11*q^2 + 48/11*q^3 + 84/11*q^4 + 72/11*q^5 + O(q^6) ] sage: m._q_expansion([1,2,0], 5) ## line 602 ## q + 2*q^2 - 5*q^3 - 3*q^4 + O(q^5) sage: sig_on_count() ## line 604 ## 0 sage: m = ModularForms(GammaH(11,[4]), 2); m ## line 623 ## Modular Forms space of dimension 2 for Congruence Subgroup Gamma_H(11) with H generated by [4] of weight 2 over Rational Field sage: m._dim_cuspidal() ## line 625 ## 1 sage: sig_on_count() ## line 627 ## 0 sage: m = ModularForms(GammaH(13,[4]), 2); m ## line 644 ## Modular Forms space of dimension 3 for Congruence Subgroup Gamma_H(13) with H generated by [4] of weight 2 over Rational Field sage: m._dim_eisenstein() ## line 646 ## 3 sage: sig_on_count() ## line 648 ## 0 sage: m = ModularForms(GammaH(11,[2]), 2); m._dim_new_cuspidal() ## line 668 ## 1 sage: sig_on_count() ## line 670 ## 0 sage: m = ModularForms(Gamma0(11), 4) ## line 686 ## sage: m._dim_new_eisenstein() ## line 687 ## 0 sage: m = ModularForms(Gamma0(11), 2) ## line 689 ## sage: m._dim_new_eisenstein() ## line 690 ## 1 sage: sig_on_count() ## line 692 ## 0 sage: m = ModularForms(Gamma0(22), 2) ## line 720 ## sage: v = m.eisenstein_params(); v ## line 721 ## [(Dirichlet character modulo 22 of conductor 1 mapping 13 |--> 1, Dirichlet character modulo 22 of conductor 1 mapping 13 |--> 1, 2), (Dirichlet character modulo 22 of conductor 1 mapping 13 |--> 1, Dirichlet character modulo 22 of conductor 1 mapping 13 |--> 1, 11), (Dirichlet character modulo 22 of conductor 1 mapping 13 |--> 1, Dirichlet character modulo 22 of conductor 1 mapping 13 |--> 1, 22)] sage: type(v) ## line 723 ## <class 'sage.structure.sequence.Sequence_generic'> sage: sig_on_count() ## line 725 ## 0 sage: ModularForms(27,2).eisenstein_series() ## line 745 ## [ q^3 + O(q^6), q - 3*q^2 + 7*q^4 - 6*q^5 + O(q^6), 1/12 + q + 3*q^2 + q^3 + 7*q^4 + 6*q^5 + O(q^6), 1/3 + q + 3*q^2 + 4*q^3 + 7*q^4 + 6*q^5 + O(q^6), 13/12 + q + 3*q^2 + 4*q^3 + 7*q^4 + 6*q^5 + O(q^6) ] sage: ModularForms(Gamma1(5),3).eisenstein_series() ## line 756 ## [ -1/5*zeta4 - 2/5 + q + (4*zeta4 + 1)*q^2 + (-9*zeta4 + 1)*q^3 + (4*zeta4 - 15)*q^4 + q^5 + O(q^6), q + (zeta4 + 4)*q^2 + (-zeta4 + 9)*q^3 + (4*zeta4 + 15)*q^4 + 25*q^5 + O(q^6), 1/5*zeta4 - 2/5 + q + (-4*zeta4 + 1)*q^2 + (9*zeta4 + 1)*q^3 + (-4*zeta4 - 15)*q^4 + q^5 + O(q^6), q + (-zeta4 + 4)*q^2 + (zeta4 + 9)*q^3 + (-4*zeta4 + 15)*q^4 + 25*q^5 + O(q^6) ] sage: eps = DirichletGroup(13).0^2 ## line 766 ## sage: ModularForms(eps,2).eisenstein_series() ## line 767 ## [ -7/13*zeta6 - 11/13 + q + (2*zeta6 + 1)*q^2 + (-3*zeta6 + 1)*q^3 + (6*zeta6 - 3)*q^4 - 4*q^5 + O(q^6), q + (zeta6 + 2)*q^2 + (-zeta6 + 3)*q^3 + (3*zeta6 + 3)*q^4 + 4*q^5 + O(q^6) ] sage: sig_on_count() ## line 772 ## 0 sage: m = ModularForms(11,4) ## line 779 ## sage: m._compute_q_expansion_basis(5) ## line 780 ## [q + 3*q^3 - 6*q^4 + O(q^5), q^2 - 4*q^3 + 2*q^4 + O(q^5), 1 + O(q^5), q + 9*q^2 + 28*q^3 + 73*q^4 + O(q^5)] sage: sig_on_count() ## line 782 ## 0 sage: M = ModularForms(11, 2) ## line 800 ## sage: M._compute_hecke_matrix(6) ## line 801 ## [ 2 0] [ 0 12] sage: M = ModularForms(1, 512) ## line 812 ## sage: t = M._compute_hecke_matrix(5) # long time (2s) ## line 813 ## sage: f = t.charpoly() # long time (4s) ## line 814 ## you are running out of primes. 1000 coprime primes found
Change History (16)
comment:1 Changed 7 years ago by
- Milestone changed from sage-6.1 to sage-6.2
comment:2 Changed 7 years ago by
- Milestone changed from sage-6.2 to sage-6.3
comment:3 Changed 7 years ago by
- Keywords random_fail added
comment:4 Changed 7 years ago by
- Milestone changed from sage-6.3 to sage-6.4
comment:5 Changed 7 years ago by
comment:6 Changed 6 years ago by
- Branch set to u/bhutz/ticket/15535
- Created changed from 12/17/13 19:15:36 to 12/17/13 19:15:36
- Modified changed from 08/20/14 10:14:59 to 08/20/14 10:14:59
comment:7 Changed 6 years ago by
- Branch u/bhutz/ticket/15535 deleted
Sorry, I had the wrong ticket checked out.
comment:8 Changed 6 years ago by
I ran into this issue on Sage 6.4.1 trying to compute characteristic polynomials. I was computing the characteristic polynomial of hundreds of thousands of 3x3, 4x4, ..., 8x8 integer matrices, and at some point I got the following:
sage: A = matrix(ZZ, 4, 4, [50528, 38927, 19455, 31617, 58686, 39770, 31059, 21905, 13382, 35615, 18158, 11629, 25923, 12324, 51823, 27000]) sage: A.charpoly() you are running out of primes. 1000 coprime primes found 1 sage: B = copy(A); B.charpoly() x^4 - 135456*x^3 + 1234244249*x^2 + 17242461420805*x - 995535814473032365
comment:9 Changed 6 years ago by
Same happened with #17640.
comment:10 Changed 6 years ago by
Just got another report of this on sage-release
...
comment:11 Changed 6 years ago by
- Milestone changed from sage-6.4 to sage-6.6
comment:12 Changed 6 years ago by
- Cc cpernet added
- Milestone changed from sage-6.6 to sage-6.9
comment:13 Changed 5 years ago by
I just ran into this when trying to compute newforms:
sage: N_83_4 = Newforms(Gamma1(83),4,names='a') you are running out of primes. 1000 coprime primes found
and sage ends up aborting to compute the decomposition in the end:
AssertionError: bug in decomposition; the sum of the dimensions (=0) of the factors must equal the dimension (800) of the acted on space: Factors found: [ ] Space: Vector space of degree 902 and dimension 800 over Rational Field Basis matrix: 800 x 902 dense matrix over Rational Field
comment:14 Changed 5 years ago by
- Milestone changed from sage-6.9 to sage-7.4
From sage-devel:
Update: I think I finally found the bug that led some rare computations to hang forever: givaro's random iterator was seed from the 6 digits of the current time microseconds, and could, with proba 10^-6 be seeded with 0, and the congurential generator would then always output 0, causing the search for a non-zero krylov vector to hang forever! This might be also a fix to https://trac.sagemath.org/ticket/15535 [...] Clément
So the probability of failure is actually configurable! B)
comment:15 Changed 3 years ago by
- Milestone changed from sage-7.4 to sage-duplicate/invalid/wontfix
- Status changed from new to needs_review
and what about this one ? also fixed by #24214 ? could be closed ?
comment:16 Changed 3 years ago by
- Resolution set to fixed
- Status changed from needs_review to closed
I haven't seen this in a long time
Following works for n=2..6. After several hours it fails for n=7 with same error message "1000 coprime primes". Failing function is eigenvalues(), but is this actually same bug?
This was tested on Sage 6.3. Also n=8 fails.