Changes between Version 6 and Version 7 of Ticket #10369


Ignore:
Timestamp:
12/10/10 21:04:32 (11 years ago)
Author:
jdemeyer
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • Ticket #10369 – Description

    v6 v7  
    2424}}}
    2525
    26 It is t**5 times an ireducible polynomial. GP released with Sage computes the factorization without problems, but trying to compute the factorization with Sage the program starts to eat all available RAM and you have to kill the program.  GP session:
     26It is t**5 times an ireducible polynomial. GP released with Sage computes the factorization without problems, but trying to compute the factorization with Sage the program starts to eat all available RAM and you have to kill the program.  GP session of what actually happens (note that `l2` is not monic):
    2727{{{
    28   t; K = nfinit(a^6 + a^5 + a^4 + a^3 + a^2 + a + 1)
    29   l2 = (1/7*a^2 - 1/7*a)*t^10 + (4/7*a - 6/7)*t^9 + (102/49*a^5 + 99/49*a^4 + 96/49*a^3 + 93/49*a^2 + 90/49*a + 150/49)*t^8 + (-160/49*a^5 - 36/49*a^4 - 48/49*a^3 - 8/7*a^2 - 60/49*a - 60/49)*t^7 + (30/49*a^5 - 55/49*a^4 + 20/49*a^3 + 5/49*a^2)*t^6 + (6/49*a^4 - 12/49*a^3 + 6/49*a^2)*t^5
    30   nffactor(K, l2)
    31 %3 =
    32 [t 5]
    33 
    34 [t^5 + Mod(-40/7*a^5 - 38/7*a^4 - 36/7*a^3 - 34/7*a^2 - 32/7*a - 30/7, a^6 + a^5 + a^4 + a^3 + a^2 + a + 1)*t^4 + Mod(60/7*a^5 - 30/7*a^4 - 18/7*a^3 - 9/7*a^2 - 3/7*a, a^6 + a^5 + a^4 + a^3 + a^2 + a + 1)*t^3 + Mod(60/7*a^4 - 40/7*a^3 - 16/7*a^2 - 4/7*a, a^6 + a^5 + a^4 + a^3 + a^2 + a + 1)*t^2 + Mod(30/7*a^3 - 25/7*a^2 - 5/7*a, a^6 + a^5 + a^4 + a^3 + a^2 + a + 1)*t + Mod(6/7*a^2 - 6/7*a, a^6 + a^5 + a^4 + a^3 + a^2 + a + 1) 1]
     28K = nfinit(a^6 + a^5 + a^4 + a^3 + a^2 + a + 1)
     29f = Mod(1, a^6 + a^5 + a^4 + a^3 + a^2 + a + 1)*x^10 + Mod(4/7*a - 6/7, a^6 + a^5 + a^4 + a^3 + a^2 + a + 1)*x^9 + Mod(9/49*a^2 - 3/7*a + 15/49, a^6 + a^5 + a^4 + a^3 + a^2 + a + 1)*x^8 + Mod(8/343*a^3 - 32/343*a^2 + 40/343*a - 20/343, a^6 + a^5 + a^4 + a^3 + a^2 + a + 1)*x^7 + Mod(5/2401*a^4 - 20/2401*a^3 + 40/2401*a^2 - 5/343*a + 15/2401, a^6 + a^5 + a^4 + a^3 + a^2 + a + 1)*x^6 + Mod(-6/16807*a^4 + 12/16807*a^3 - 18/16807*a^2 + 12/16807*a - 6/16807, a^6 + a^5 + a^4 + a^3 + a^2 + a + 1)*x^5
     30nffactor(K, f)
    3531}}}