# HG changeset patch
# User William Stein
# Date 1248150317 25200
# Node ID 1f180754986d047ae5bc6742150087c3b47d9850
# Parent 8888dde49957829af7545115defd0b4d13ccade1
trac #6071 -- referee followup patch
diff -r 8888dde49957 -r 1f180754986d sage/modular/modform/ambient.py
--- a/sage/modular/modform/ambient.py Tue May 05 09:50:58 2009 +0100
+++ b/sage/modular/modform/ambient.py Mon Jul 20 21:25:17 2009 -0700
@@ -345,9 +345,16 @@
def module(self):
"""
- Return the underlying free module corresponding to this space of
- modular forms. This is a free module (viewed as a tuple space) of
- the same dimension as this space over the same base ring.
+ Return the underlying free module corresponding to this space
+ of modular forms.
+
+ If the dimension of self can be computed reasonably quickly,
+ then this function returns a free module (viewed as a tuple
+ space) of the same dimension as self over the same base ring.
+ Otherwise, the dimension of self.module() may be smaller. For
+ example, in the case of weight 1 forms, in some cases the
+ dimension can't easily be computed so self.module() is of
+ smaller dimension.
EXAMPLES::
@@ -357,9 +364,13 @@
sage: ModularForms(Gamma1(13),4, GF(49,'b')).free_module()
Vector space of dimension 27 over Finite Field in b of size 7^2
+ Note that in the following example the dimension can't be
+ (quickly) computed, so M.module() returns a space of different
+ dimension than M::
+
sage: M = ModularForms(Gamma1(57), 1); M
Modular Forms space of dimension (unknown) for Congruence ...
- sage: M.free_module()
+ sage: M.module()
Vector space of dimension 36 over Rational Field
sage: M.basis()
Traceback (most recent call last):