Ticket #9945: 9945-referee-fixes.patch

File 9945-referee-fixes.patch, 2.1 KB (added by Robert Bradshaw, 12 years ago)
  • sage/categories/quotient_fields.py

    # HG changeset patch
    # User Robert Bradshaw <robertwb@math.washington.edu>
    # Date 1285050315 25200
    # Node ID f46a1dda3f35353b642109652cd74a96a43993ed
    # Parent  8f1f120b315c730ada5e8af70c26645306458e54
    [mq]: 9945-referee-fixes.patch
    
    diff -r 8f1f120b315c -r f46a1dda3f35 sage/categories/quotient_fields.py
    a b  
    112112                sage: sum(parts) == q
    113113                True
    114114           
    115             We do the best we can over in-exact fields::
     115            We do the best we can over inexact fields::
    116116           
    117117                sage: R.<x> = RealField(20)[]
    118118                sage: q = 1/(x^2 + 2)^2 + 1/(x-1); q
     
    162162                return whole, [numer/r**e for r,e in factors]
    163163            if not self.parent().is_exact():
    164164                # factors not grouped in this case
    165                 # TODO: think about changing the factor code itself
    166                 # (what side effects would this have this be bad?)
    167165                all = {}
    168166                for r in factors: all[r[0]] = 0
    169167                for r in factors: all[r[0]] += r[1]
  • sage/rings/ring.pyx

    diff -r 8f1f120b315c -r f46a1dda3f35 sage/rings/ring.pyx
    a b  
    16131613    def category(self):
    16141614        """
    16151615        Return the category of this field, which is the category
    1616         of fields.
     1616        of fields or a subcategory thereof.
    16171617
    16181618        EXAMPLES:
    16191619
    16201620        Examples with fields::
    16211621
    16221622            sage: QQ.category()
    1623             Category of fields
     1623            Category of quotient fields
    16241624            sage: RR.category()
    16251625            Category of fields
    16261626            sage: CC.category()
     
    16281628            sage: R.<x> = PolynomialRing(ZZ)
    16291629            sage: Q = R.fraction_field()
    16301630            sage: Q.category()
    1631             Category of fields
     1631            Category of quotient fields
    16321632
    16331633        Although fields themselves, number fields belong to the category
    16341634        of 'number fields'::