# HG changeset patch
# User Volker Braun <vbraun@stp.dias.ie>
# Date 1291212200 -3600
# Node ID 085db09377853053a76517aa627e7177c27be5e0
# Parent 844047ddf53264d3be5381d1839a54a8125a67fd
Trac 9880: Revert "random output" marks introduced in Trac #10187 is fixed.
This patch sets doctests back to non-random that were marked "# random output" in the complimentary patch on the trac #10187.
diff -r 844047ddf532 -r 085db0937785 sage/calculus/calculus.py
a
|
b
|
|
340 | 340 | Check that the problem with Taylor expansions of the gamma function |
341 | 341 | (Trac #9217) is fixed:: |
342 | 342 | |
343 | | sage: taylor(gamma(1/3+x),x,0,3) # random output - remove this in trac #9880 |
| 343 | sage: taylor(gamma(1/3+x),x,0,3) |
344 | 344 | -1/432*((36*(pi*sqrt(3) + 9*log(3))*euler_gamma^2 + 27*pi^2*log(3) + 72*euler_gamma^3 + 243*log(3)^3 + 18*(6*pi*sqrt(3)*log(3) + pi^2 + 27*log(3)^2 + 12*psi(1, 1/3))*euler_gamma + 324*psi(1, 1/3)*log(3) + (pi^3 + 9*(9*log(3)^2 + 4*psi(1, 1/3))*pi)*sqrt(3))*gamma(1/3) - 72*gamma(1/3)*psi(2, 1/3))*x^3 + 1/24*(6*pi*sqrt(3)*log(3) + 4*(pi*sqrt(3) + 9*log(3))*euler_gamma + pi^2 + 12*euler_gamma^2 + 27*log(3)^2 + 12*psi(1, 1/3))*x^2*gamma(1/3) - 1/6*(6*euler_gamma + pi*sqrt(3) + 9*log(3))*x*gamma(1/3) + gamma(1/3) |
345 | 345 | sage: map(lambda f:f[0].n(), _.coeffs()) # numerical coefficients to make comparison easier; Maple 12 gives same answer |
346 | 346 | [2.6789385347..., -8.3905259853..., 26.662447494..., -80.683148377...] |
diff -r 844047ddf532 -r 085db0937785 sage/plot/plot3d/transform.pyx
a
|
b
|
|
214 | 214 | the whole matrix like above): |
215 | 215 | |
216 | 216 | sage: m = m.parent()([x.simplify_full() for x in m._list()]) |
217 | | sage: m # random output - remove this in trac #9880 |
| 217 | sage: m |
218 | 218 | [ -(cos(theta) - 1)*x^2 + cos(theta) -(cos(theta) - 1)*sqrt(-x^2 - z^2 + 1)*x + sin(theta)*abs(z) -((cos(theta) - 1)*x*z^2 + sqrt(-x^2 - z^2 + 1)*sin(theta)*abs(z))/z] |
219 | 219 | [ -(cos(theta) - 1)*sqrt(-x^2 - z^2 + 1)*x - sin(theta)*abs(z) (cos(theta) - 1)*x^2 + (cos(theta) - 1)*z^2 + 1 -((cos(theta) - 1)*sqrt(-x^2 - z^2 + 1)*z*abs(z) - x*z*sin(theta))/abs(z)] |
220 | 220 | [ -((cos(theta) - 1)*x*z^2 - sqrt(-x^2 - z^2 + 1)*sin(theta)*abs(z))/z -((cos(theta) - 1)*sqrt(-x^2 - z^2 + 1)*z*abs(z) + x*z*sin(theta))/abs(z) -(cos(theta) - 1)*z^2 + cos(theta)] |