Ticket #9648: 9648_doc_fixes.patch

File 9648_doc_fixes.patch, 1.8 KB (added by jdemeyer, 11 years ago)

Reviewer patch, apply on top of previous

  • sage/categories/modules_with_basis.py

    # HG changeset patch
    # User Jeroen Demeyer <jdemeyer@cage.ugent.be>
    # Date 1288647728 -3600
    # Node ID a9eb7c8304e811be8d50c7ce0f4662e77731bd0f
    # Parent  c7abb1527d31c0b7de6c5b20c20c8b9285945330
    #9648: Fix some doctests
    
    diff -r c7abb1527d31 -r a9eb7c8304e8 sage/categories/modules_with_basis.py
    a b  
    131131
    132132    def _call_(self, x):
    133133        """
    134         Construct a module with basis from the data in ``x``
     134        Construct a module with basis from the data in ``x``.
    135135
    136136        EXAMPLES::
    137137
     
    165165
    166166    def is_abelian(self):
    167167        """
    168         Returns whether this category is abelian
     168        Returns whether this category is abelian.
    169169
    170170        This is the case if and only if the base ring is a field.
    171171
     
    229229                sage: phi(x[1] + x[3])
    230230                B[1] + 2*B[2] + B[3] + 2*B[4]
    231231
    232             With the ``zero`` argument, one can define affine morphisms:
     232            With the ``zero`` argument, one can define affine morphisms::
    233233
    234234                sage: phi = X.module_morphism(lambda i: Y.monomial(i) + 2*Y.monomial(i+1), codomain = Y, zero = 10*y[1])
    235235                sage: phi(x[1] + x[3])
     
    248248                sage: phi.category_for() # todo: not implemented (ZZ is currently not in Modules(ZZ))
    249249                Category of modules over Integer Ring
    250250
    251             Or more generaly any ring admitting a coercion map from the base ring:
     251            Or more generaly any ring admitting a coercion map from the base ring::
    252252
    253253                sage: phi = X.module_morphism(on_basis= lambda i: i, codomain=RR )
    254254                sage: phi( 2 * X.monomial(1) + 3 * X.monomial(-1) )