| 1 | /////////////////////////////////////////////////////////////////////////////// |
| 2 | // Copyright (C) 2010 Sebastian Pancratz // |
| 3 | // // |
| 4 | // Distributed under the terms of the GNU General Public License as // |
| 5 | // published by the Free Software Foundation; either version 2 of the // |
| 6 | // License, or (at your option) any later version. // |
| 7 | // // |
| 8 | // http://www.gnu.org/licenses/ // |
| 9 | /////////////////////////////////////////////////////////////////////////////// |
| 10 | |
| 11 | #include "fmpq_poly.h" |
| 12 | |
| 13 | /** |
| 14 | * \file fmpq_poly.c |
| 15 | * \brief Fast implementation of the rational function field |
| 16 | * \author Sebastian Pancratz |
| 17 | * \date Mar 2010 -- July 2010 |
| 18 | * \version 0.1.3 |
| 19 | * |
| 20 | * \mainpage |
| 21 | * |
| 22 | * <center> |
| 23 | * A FLINT-based implementation of the rational polynomial ring. |
| 24 | * </center> |
| 25 | * |
| 26 | * \section Overview |
| 27 | * |
| 28 | * The module <tt>fmpq_poly</tt> provides functions for performing |
| 29 | * arithmetic on rational polynomials in \f$\mathbf{Q}[t]\f$, represented as |
| 30 | * quotients of integer polynomials of type <tt>fmpz_poly_t</tt> and |
| 31 | * denominators of type <tt>fmpz_t</tt>. These functions start with the |
| 32 | * prefix <tt>fmpq_poly_</tt>. |
| 33 | * |
| 34 | * Rational polynomials are stored in objects of type #fmpq_poly_t, |
| 35 | * which is an array of #fmpq_poly_struct's of length one. This |
| 36 | * permits passing parameters of type #fmpq_poly_t by reference. |
| 37 | * We also define the type #fmpq_poly_ptr to be a pointer to |
| 38 | * #fmpq_poly_struct's. |
| 39 | * |
| 40 | * The representation of a rational polynomial as the quotient of an integer |
| 41 | * polynomial and an integer denominator can be made canonical by demanding |
| 42 | * the numerator and denominator to be coprime and the denominator to be |
| 43 | * positive. As the only special case, we represent the zero function as |
| 44 | * \f$0/1\f$. All arithmetic functions assume that the operands are in this |
| 45 | * canonical form, and canonicalize their result. If the numerator or |
| 46 | * denominator is modified individually, for example using the methods in the |
| 47 | * group \ref NumDen, it is the user's responsibility to canonicalize the |
| 48 | * rational function using the function #fmpq_poly_canonicalize() if necessary. |
| 49 | * |
| 50 | * All methods support aliasing of their inputs and outputs \e unless |
| 51 | * explicitly stated otherwise, subject to the following caveat. If |
| 52 | * different rational polynomials (as objects in memory, not necessarily in |
| 53 | * the mathematical sense) share some of the underlying integer polynomials |
| 54 | * or integers, the behaviour is undefined. |
| 55 | * |
| 56 | * \section Changelog Version history |
| 57 | * - 0.1.3 |
| 58 | * - Changed #fmpq_poly_inv() |
| 59 | * - Another sign check to <tt>fmpz_abs</tt> in #fmpq_poly_content() |
| 60 | * - 0.1.2 |
| 61 | * - Introduce a function #fmpq_poly_monic() and use this to simplify the |
| 62 | * code for the gcd and xgcd functions |
| 63 | * - Make further use of #fmpq_poly_is_zero() |
| 64 | * - 0.1.1 |
| 65 | * - Replaced a few sign checks and negations by <tt>fmpz_abs</tt> |
| 66 | * - Small changes to comments and the documentation |
| 67 | * - Moved some function bodies from #fmpq_poly.h to #fmpq_poly.c |
| 68 | * - 0.1.0 |
| 69 | * - First draft, based on the author's Sage code |
| 70 | * |
| 71 | * \bug The method #fmpq_poly_to_string_pretty() leaks memory because the |
| 72 | * underlying FLINT 1.5.0 method does so. |
| 73 | */ |
| 74 | |
| 75 | /** |
| 76 | * \defgroup Definitions Type definitions |
| 77 | * \defgroup MemoryManagement Memory management |
| 78 | * \defgroup NumDen Accessing numerator and denominator |
| 79 | * \defgroup Assignment Assignment and basic manipulation |
| 80 | * \defgroup Coefficients Setting and retrieving individual coefficients |
| 81 | * \defgroup PolyParameters Polynomial parameters |
| 82 | * \defgroup Comparison Comparison |
| 83 | * \defgroup Addition Addition and subtraction |
| 84 | * \defgroup ScalarMul Scalar multiplication and division |
| 85 | * \defgroup Multiplication Multiplication |
| 86 | * \defgroup Division Euclidean division |
| 87 | * \defgroup Powering Powering |
| 88 | * \defgroup GCD Greatest common divisor |
| 89 | * \defgroup Derivative Derivative |
| 90 | * \defgroup Evaluation Evaluation |
| 91 | * \defgroup Content Gaussian content |
| 92 | * \defgroup Resultant Resultant |
| 93 | * \defgroup Composition Composition |
| 94 | * \defgroup Squarefree Square-free test |
| 95 | * \defgroup Subpolynomials Subpolynomials |
| 96 | * \defgroup StringConversions String conversions and I/O |
| 97 | */ |
| 98 | |
| 99 | /////////////////////////////////////////////////////////////////////////////// |
| 100 | // Auxiliary functions // |
| 101 | /////////////////////////////////////////////////////////////////////////////// |
| 102 | |
| 103 | /** |
| 104 | * Returns the number of digits in the decimal representation of \c n. |
| 105 | */ |
| 106 | unsigned int fmpq_poly_places(unsigned long n) |
| 107 | { |
| 108 | unsigned int count; |
| 109 | if (n == 0) |
| 110 | return 1u; |
| 111 | count = 0; |
| 112 | while (n > 0) |
| 113 | { |
| 114 | n /= 10ul; |
| 115 | count++; |
| 116 | } |
| 117 | return count; |
| 118 | } |
| 119 | |
| 120 | /////////////////////////////////////////////////////////////////////////////// |
| 121 | // Implementation // |
| 122 | /////////////////////////////////////////////////////////////////////////////// |
| 123 | |
| 124 | /** |
| 125 | * \brief Puts <tt>f</tt> into canonical form. |
| 126 | * \ingroup Definitions |
| 127 | * |
| 128 | * This method ensures that the denominator is coprime to the content |
| 129 | * of the numerator polynomial, and that the denominator is positive. |
| 130 | * If <tt>f-\>den == NULL</tt>, this method does not change this. |
| 131 | * |
| 132 | * This methods assumes that the denominator, if initialised, is non-zero. |
| 133 | * However, it is allowed to be negative. |
| 134 | * |
| 135 | * The optional parameter <tt>temp</tt> is the temporary variable that this |
| 136 | * method would otherwise need to allocate. If <tt>temp</tt> is provided as |
| 137 | * an initialized <tt>fmpz_t</tt>, it is assumed \e without further checks |
| 138 | * that it is large enough. For example, |
| 139 | * <tt>max(f-\>num-\>limbs, fmpz_size(f-\>den))</tt> limbs will certainly |
| 140 | * suffice. |
| 141 | */ |
| 142 | void fmpq_poly_canonicalize(fmpq_poly_ptr f, fmpz_t temp) |
| 143 | { |
| 144 | int tcheck; /* True if temp == NULL */ |
| 145 | fmpz_t tempgcd; /* Another temporary variable */ |
| 146 | |
| 147 | if (_fmpq_poly_den_is_one(f)) /* If the denominator is one.. */ |
| 148 | return; |
| 149 | |
| 150 | if (fmpq_poly_is_zero(f)) /* If f is zero.. */ |
| 151 | fmpz_set_si(f->den, 1); |
| 152 | else if (fmpz_is_m1(f->den)) /* If f != 0 and den(f) == -1.. */ |
| 153 | { |
| 154 | fmpz_poly_neg(f->num, f->num); |
| 155 | fmpz_set_si(f->den, 1); |
| 156 | } |
| 157 | else /* If f != 0 and den(f) != +- 1.. */ |
| 158 | { |
| 159 | if (temp == NULL) |
| 160 | { |
| 161 | tcheck = 1; |
| 162 | temp = fmpz_init(FLINT_MAX(f->num->limbs, fmpz_size(f->den))); |
| 163 | } |
| 164 | else |
| 165 | tcheck = 0; |
| 166 | |
| 167 | fmpz_poly_content(temp, f->num); |
| 168 | fmpz_abs(temp, temp); |
| 169 | |
| 170 | if (fmpz_is_one(temp)) /* If the content of f is 1.. */ |
| 171 | { |
| 172 | if (fmpz_sgn(f->den) < 0) |
| 173 | { |
| 174 | fmpz_poly_neg(f->num, f->num); |
| 175 | fmpz_neg(f->den, f->den); |
| 176 | } |
| 177 | } |
| 178 | else /* If the content exceeds 1.. */ |
| 179 | { |
| 180 | tempgcd = fmpz_init(FLINT_MAX(f->num->limbs, fmpz_size(f->den))); |
| 181 | |
| 182 | fmpz_gcd(tempgcd, temp, f->den); |
| 183 | fmpz_abs(tempgcd, tempgcd); |
| 184 | |
| 185 | if (fmpz_is_one(tempgcd)) |
| 186 | { |
| 187 | if (fmpz_sgn(f->den) < 0) |
| 188 | { |
| 189 | fmpz_poly_neg(f->num, f->num); |
| 190 | fmpz_neg(f->den, f->den); |
| 191 | } |
| 192 | } |
| 193 | else |
| 194 | { |
| 195 | if (fmpz_sgn(f->den) < 0) |
| 196 | fmpz_neg(tempgcd, tempgcd); |
| 197 | fmpz_poly_scalar_div_fmpz(f->num, f->num, tempgcd); |
| 198 | fmpz_tdiv(temp, f->den, tempgcd); |
| 199 | fmpz_set(f->den, temp); |
| 200 | } |
| 201 | |
| 202 | fmpz_clear(tempgcd); |
| 203 | } |
| 204 | |
| 205 | if (tcheck) |
| 206 | fmpz_clear(temp); |
| 207 | } |
| 208 | } |
| 209 | |
| 210 | /////////////////////////////////////////////////////////////////////////////// |
| 211 | // Assignment and basic manipulation |
| 212 | |
| 213 | /** |
| 214 | * \ingroup Assignment |
| 215 | * |
| 216 | * Sets the element \c rop to the additive inverse of \c op. |
| 217 | */ |
| 218 | void fmpq_poly_neg(fmpq_poly_ptr rop, const fmpq_poly_ptr op) |
| 219 | { |
| 220 | if (rop == op) |
| 221 | { |
| 222 | fmpz_poly_neg(rop->num, op->num); |
| 223 | } |
| 224 | else |
| 225 | { |
| 226 | fmpz_poly_neg(rop->num, op->num); |
| 227 | fmpq_poly_set_den(rop, op->den); |
| 228 | } |
| 229 | } |
| 230 | |
| 231 | /** |
| 232 | * \ingroup Assignment |
| 233 | * |
| 234 | * Sets the element \c rop to the multiplicative inverse of \c op. |
| 235 | * |
| 236 | * Assumes that the element \c op is a unit. Otherwise, an exception |
| 237 | * is raised in the form of an <tt>abort</tt> statement. |
| 238 | */ |
| 239 | void fmpq_poly_inv(fmpq_poly_ptr rop, const fmpq_poly_ptr op) |
| 240 | { |
| 241 | fmpz_t t; |
| 242 | |
| 243 | /* Assertion! */ |
| 244 | if (fmpz_poly_degree(op->num) != 0) |
| 245 | { |
| 246 | printf("ERROR (fmpq_poly_inv). Element is not a unit.\n"); |
| 247 | abort(); |
| 248 | } |
| 249 | |
| 250 | /* Case 1. The denominator of op is one. */ |
| 251 | if (_fmpq_poly_den_is_one(op)) |
| 252 | { |
| 253 | fmpq_poly_set_den(rop, op->num->coeffs); |
| 254 | fmpz_poly_zero(rop->num); |
| 255 | fmpz_poly_set_coeff_si(rop->num, 0, 1); |
| 256 | if (rop->den != NULL && fmpz_sgn(rop->den) < 0) |
| 257 | { |
| 258 | fmpz_poly_neg(rop->num, rop->num); |
| 259 | fmpz_neg(rop->den, rop->den); |
| 260 | } |
| 261 | } |
| 262 | /* Case 2. Now the denominator of op is not one. */ |
| 263 | else |
| 264 | { |
| 265 | if (rop == op) |
| 266 | { |
| 267 | t = fmpz_init(rop->num->limbs); |
| 268 | fmpz_set(t, rop->num->coeffs); |
| 269 | fmpz_poly_zero(rop->num); |
| 270 | if (fmpz_sgn(t) > 0) |
| 271 | { |
| 272 | fmpz_poly_set_coeff_fmpz(rop->num, 0, rop->den); |
| 273 | rop->den = fmpz_realloc(rop->den, fmpz_size(t)); |
| 274 | fmpz_set(rop->den, t); |
| 275 | } |
| 276 | else |
| 277 | { |
| 278 | fmpz_neg(rop->den, rop->den); |
| 279 | fmpz_poly_set_coeff_fmpz(rop->num, 0, rop->den); |
| 280 | rop->den = fmpz_realloc(rop->den, fmpz_size(t)); |
| 281 | fmpz_neg(rop->den, t); |
| 282 | } |
| 283 | fmpz_clear(t); |
| 284 | } |
| 285 | else |
| 286 | { |
| 287 | fmpz_poly_zero(rop->num); |
| 288 | fmpz_poly_set_coeff_fmpz(rop->num, 0, op->den); |
| 289 | fmpq_poly_set_den(rop, op->num->coeffs); |
| 290 | if (rop->den != NULL && fmpz_sgn(rop->den) < 0) |
| 291 | { |
| 292 | fmpz_poly_neg(rop->num, rop->num); |
| 293 | fmpz_neg(rop->den, rop->den); |
| 294 | } |
| 295 | } |
| 296 | } |
| 297 | } |
| 298 | |
| 299 | /////////////////////////////////////////////////////////////////////////////// |
| 300 | // Setting/ retrieving individual coefficients |
| 301 | |
| 302 | /** |
| 303 | * \ingroup Coefficients |
| 304 | * |
| 305 | * Obtains the <tt>i</tt>th coefficient from the polynomial <tt>op</tt>. |
| 306 | */ |
| 307 | void fmpq_poly_get_coeff_mpq(mpq_t rop, const fmpq_poly_ptr op, unsigned long i) |
| 308 | { |
| 309 | fmpz_poly_get_coeff_mpz(mpq_numref(rop), op->num, i); |
| 310 | if (op->den == NULL) |
| 311 | mpz_set_si(mpq_denref(rop), 1); |
| 312 | else |
| 313 | fmpz_to_mpz(mpq_denref(rop), op->den); |
| 314 | mpq_canonicalize(rop); |
| 315 | } |
| 316 | |
| 317 | /** |
| 318 | * \ingroup Coefficients |
| 319 | * |
| 320 | * Sets the <tt>i</tt>th coefficient of the polynomial <tt>op</tt> to \c x. |
| 321 | */ |
| 322 | void fmpq_poly_set_coeff_fmpz(fmpq_poly_ptr rop, const unsigned long i, const fmpz_t x) |
| 323 | { |
| 324 | fmpz_t t; |
| 325 | int canonicalize; |
| 326 | |
| 327 | /* Is the denominator 1? This includes the case when rop == 0. */ |
| 328 | if (_fmpq_poly_den_is_one(rop)) |
| 329 | { |
| 330 | fmpz_poly_set_coeff_fmpz(rop->num, i, x); |
| 331 | return; |
| 332 | } |
| 333 | |
| 334 | t = fmpz_poly_get_coeff_ptr(rop->num, i); |
| 335 | canonicalize = !(t == NULL || fmpz_is_zero(t)); |
| 336 | |
| 337 | t = fmpz_init(fmpz_size(x) + fmpz_size(rop->den)); |
| 338 | fmpz_mul(t, x, rop->den); |
| 339 | fmpz_poly_set_coeff_fmpz(rop->num, i, t); |
| 340 | fmpz_clear(t); |
| 341 | if (canonicalize) |
| 342 | fmpq_poly_canonicalize(rop, NULL); |
| 343 | } |
| 344 | |
| 345 | /** |
| 346 | * \ingroup Coefficients |
| 347 | * |
| 348 | * Sets the <tt>i</tt>th coefficient of the polynomial <tt>op</tt> to \c x. |
| 349 | */ |
| 350 | void fmpq_poly_set_coeff_mpz(fmpq_poly_ptr rop, const unsigned long i, const mpz_t x) |
| 351 | { |
| 352 | mpz_t z; |
| 353 | fmpz_t t; |
| 354 | int canonicalize; |
| 355 | |
| 356 | /* Is the denominator 1? This includes the case when rop == 0. */ |
| 357 | if (_fmpq_poly_den_is_one(rop)) |
| 358 | { |
| 359 | fmpz_poly_set_coeff_mpz(rop->num, i, x); |
| 360 | return; |
| 361 | } |
| 362 | |
| 363 | t = fmpz_poly_get_coeff_ptr(rop->num, i); |
| 364 | canonicalize = !(t == NULL || fmpz_is_zero(t)); |
| 365 | |
| 366 | mpz_init(z); |
| 367 | fmpz_to_mpz(z, rop->den); |
| 368 | mpz_mul(z, z, x); |
| 369 | fmpz_poly_set_coeff_mpz(rop->num, i, z); |
| 370 | if (canonicalize) |
| 371 | fmpq_poly_canonicalize(rop, NULL); |
| 372 | mpz_clear(z); |
| 373 | } |
| 374 | |
| 375 | /** |
| 376 | * \ingroup Coefficients |
| 377 | * |
| 378 | * Sets the <tt>i</tt>th coefficient of the polynomial <tt>op</tt> to \c x. |
| 379 | */ |
| 380 | void fmpq_poly_set_coeff_mpq(fmpq_poly_ptr rop, const unsigned long i, const mpq_t x) |
| 381 | { |
| 382 | fmpz_t oldc; |
| 383 | mpz_t den, gcd, t; |
| 384 | int canonicalize; |
| 385 | |
| 386 | if (rop->den == NULL) |
| 387 | mpz_init_set_si(den, 1); |
| 388 | else |
| 389 | { |
| 390 | mpz_init(den); |
| 391 | fmpz_to_mpz(den, rop->den); |
| 392 | } |
| 393 | mpz_init(gcd); |
| 394 | mpz_gcd(gcd, den, mpq_denref(x)); |
| 395 | |
| 396 | oldc = fmpz_poly_get_coeff_ptr(rop->num, i); |
| 397 | canonicalize = !(oldc == NULL || fmpz_is_zero(oldc)); |
| 398 | |
| 399 | if (mpz_cmp(mpq_denref(x), gcd) == 0) |
| 400 | { |
| 401 | mpz_divexact(den, den, gcd); |
| 402 | mpz_mul(gcd, den, mpq_numref(x)); |
| 403 | fmpz_poly_set_coeff_mpz(rop->num, i, gcd); |
| 404 | if (canonicalize) |
| 405 | fmpq_poly_canonicalize(rop, NULL); |
| 406 | } |
| 407 | else |
| 408 | { |
| 409 | mpz_init(t); |
| 410 | mpz_divexact(t, mpq_denref(x), gcd); |
| 411 | fmpz_poly_scalar_mul_mpz(rop->num, rop->num, t); |
| 412 | |
| 413 | mpz_divexact(gcd, den, gcd); |
| 414 | mpz_mul(gcd, gcd, mpq_numref(x)); |
| 415 | |
| 416 | fmpz_poly_set_coeff_mpz(rop->num, i, gcd); |
| 417 | |
| 418 | mpz_mul(den, den, t); |
| 419 | _fmpq_poly_den_fit_limbs(rop, mpz_size(den)); |
| 420 | mpz_to_fmpz(rop->den, den); |
| 421 | |
| 422 | if (canonicalize) |
| 423 | fmpq_poly_canonicalize(rop, NULL); |
| 424 | mpz_clear(t); |
| 425 | } |
| 426 | |
| 427 | /* Clean-up */ |
| 428 | mpz_clear(den); |
| 429 | mpz_clear(gcd); |
| 430 | } |
| 431 | |
| 432 | /** |
| 433 | * \ingroup Coefficients |
| 434 | * |
| 435 | * Sets the <tt>i</tt>th coefficient of the polynomial <tt>op</tt> to \c x. |
| 436 | */ |
| 437 | void fmpq_poly_set_coeff_si(fmpq_poly_ptr rop, const unsigned long i, long x) |
| 438 | { |
| 439 | mpz_t z; |
| 440 | fmpz_t t; |
| 441 | int canonicalize; |
| 442 | |
| 443 | /* Is the denominator 1? This includes the case when rop == 0. */ |
| 444 | if (_fmpq_poly_den_is_one(rop)) |
| 445 | { |
| 446 | fmpz_poly_set_coeff_si(rop->num, i, x); |
| 447 | return; |
| 448 | } |
| 449 | |
| 450 | t = fmpz_poly_get_coeff_ptr(rop->num, i); |
| 451 | canonicalize = !(t == NULL || fmpz_is_zero(t)); |
| 452 | |
| 453 | mpz_init(z); |
| 454 | fmpz_to_mpz(z, rop->den); |
| 455 | mpz_mul_si(z, z, x); |
| 456 | fmpz_poly_set_coeff_mpz(rop->num, i, z); |
| 457 | if (canonicalize) |
| 458 | fmpq_poly_canonicalize(rop, NULL); |
| 459 | mpz_clear(z); |
| 460 | } |
| 461 | |
| 462 | /////////////////////////////////////////////////////////////////////////////// |
| 463 | // Comparison |
| 464 | |
| 465 | /** |
| 466 | * \brief Returns whether \c op1 and \c op2 are equal. |
| 467 | * \ingroup Comparison |
| 468 | * |
| 469 | * Returns whether the two elements \c op1 and \c op2 are equal. |
| 470 | */ |
| 471 | int fmpq_poly_equal(const fmpq_poly_ptr op1, const fmpq_poly_ptr op2) |
| 472 | { |
| 473 | if (_fmpq_poly_den_is_one(op1)) |
| 474 | { |
| 475 | if (_fmpq_poly_den_is_one(op2)) |
| 476 | return fmpz_poly_equal(op1->num, op2->num); |
| 477 | else |
| 478 | return 0; |
| 479 | } |
| 480 | else |
| 481 | { |
| 482 | if (_fmpq_poly_den_is_one(op2)) |
| 483 | return 0; |
| 484 | else |
| 485 | return fmpz_poly_equal(op1->num, op2->num); |
| 486 | } |
| 487 | } |
| 488 | |
| 489 | /** |
| 490 | * \brief Compares the two polynomials <tt>left</tt> and <tt>right</tt>. |
| 491 | * \ingroup Comparison |
| 492 | * |
| 493 | * Compares the two polnomials <tt>left</tt> and <tt>right</tt>, returning |
| 494 | * <tt>-1</tt>, <tt>0</tt>, or <tt>1</tt> as <tt>left</tt> is less than, |
| 495 | * equal to, or greater than <tt>right</tt>. |
| 496 | * |
| 497 | * The comparison is first done by degree and then, in case of a tie, by |
| 498 | * the individual coefficients, beginning with the highest. |
| 499 | */ |
| 500 | int fmpq_poly_cmp(const fmpq_poly_ptr left, const fmpq_poly_ptr right) |
| 501 | { |
| 502 | int ans; |
| 503 | long degdiff, i; |
| 504 | unsigned long limbs; |
| 505 | fmpz_t lcoeff, rcoeff; |
| 506 | |
| 507 | /* Quick check whether left and right are the same object. */ |
| 508 | if (left == right) |
| 509 | return 0; |
| 510 | |
| 511 | i = fmpz_poly_degree(left->num); |
| 512 | degdiff = i - fmpz_poly_degree(right->num); |
| 513 | |
| 514 | if (degdiff < 0) |
| 515 | return -1; |
| 516 | else if (degdiff > 0) |
| 517 | return 1; |
| 518 | else |
| 519 | { |
| 520 | if (_fmpq_poly_den_equal(left, right)) |
| 521 | { |
| 522 | if (i == -1) /* left and right are both zero */ |
| 523 | return 0; |
| 524 | limbs = FLINT_MAX(left->num->limbs, right->num->limbs) + 1; |
| 525 | lcoeff = fmpz_init(limbs); |
| 526 | while (fmpz_equal(fmpz_poly_get_coeff_ptr(left->num, i), |
| 527 | fmpz_poly_get_coeff_ptr(right->num, i)) && i > 0) |
| 528 | i--; |
| 529 | fmpz_sub(lcoeff, fmpz_poly_get_coeff_ptr(left->num, i), |
| 530 | fmpz_poly_get_coeff_ptr(right->num, i)); |
| 531 | ans = fmpz_sgn(lcoeff); |
| 532 | fmpz_clear(lcoeff); |
| 533 | return ans; |
| 534 | } |
| 535 | else if (_fmpq_poly_den_is_one(left)) /* Also right->den > 1 */ |
| 536 | { |
| 537 | limbs = FLINT_MAX(left->num->limbs + fmpz_size(right->den), |
| 538 | right->num->limbs) + 1; |
| 539 | lcoeff = fmpz_init(limbs); |
| 540 | fmpz_mul(lcoeff, fmpz_poly_get_coeff_ptr(left->num, i), right->den); |
| 541 | while (fmpz_equal(lcoeff, fmpz_poly_get_coeff_ptr(right->num, i)) |
| 542 | && i > 0) |
| 543 | { |
| 544 | i--; |
| 545 | fmpz_mul(lcoeff, fmpz_poly_get_coeff_ptr(left->num, i), |
| 546 | right->den); |
| 547 | } |
| 548 | fmpz_sub(lcoeff, lcoeff, fmpz_poly_get_coeff_ptr(right->num, i)); |
| 549 | ans = fmpz_sgn(lcoeff); |
| 550 | fmpz_clear(lcoeff); |
| 551 | return ans; |
| 552 | } |
| 553 | else if(_fmpq_poly_den_is_one(right)) /* Also left->den > 1 */ |
| 554 | { |
| 555 | limbs = FLINT_MAX(left->num->limbs, |
| 556 | right->num->limbs + fmpz_size(left->den)) + 1; |
| 557 | rcoeff = fmpz_init(limbs); |
| 558 | fmpz_mul(rcoeff, fmpz_poly_get_coeff_ptr(right->num, i), left->den); |
| 559 | while (fmpz_equal(fmpz_poly_get_coeff_ptr(left->num, i), rcoeff) |
| 560 | && i > 0) |
| 561 | { |
| 562 | i--; |
| 563 | fmpz_mul(rcoeff, fmpz_poly_get_coeff_ptr(right->num, i), |
| 564 | left->den); |
| 565 | } |
| 566 | fmpz_sub(rcoeff, fmpz_poly_get_coeff_ptr(left->num, i), rcoeff); |
| 567 | ans = fmpz_sgn(rcoeff); |
| 568 | fmpz_clear(rcoeff); |
| 569 | return ans; |
| 570 | } |
| 571 | else |
| 572 | { |
| 573 | limbs = FLINT_MAX(left->num->limbs + fmpz_size(right->den), |
| 574 | right->num->limbs + fmpz_size(left->den)) + 1; |
| 575 | lcoeff = fmpz_init(limbs); |
| 576 | rcoeff = fmpz_init(right->num->limbs + fmpz_size(left->den)); |
| 577 | fmpz_mul(lcoeff, fmpz_poly_get_coeff_ptr(left->num, i), right->den); |
| 578 | fmpz_mul(rcoeff, fmpz_poly_get_coeff_ptr(right->num, i), left->den); |
| 579 | while (fmpz_equal(lcoeff, rcoeff) && i > 0) |
| 580 | { |
| 581 | i--; |
| 582 | fmpz_mul(lcoeff, fmpz_poly_get_coeff_ptr(left->num, i), |
| 583 | right->den); |
| 584 | fmpz_mul(rcoeff, fmpz_poly_get_coeff_ptr(right->num, i), |
| 585 | left->den); |
| 586 | } |
| 587 | fmpz_sub(lcoeff, lcoeff, rcoeff); |
| 588 | ans = fmpz_sgn(lcoeff); |
| 589 | fmpz_clear(lcoeff); |
| 590 | fmpz_clear(rcoeff); |
| 591 | return ans; |
| 592 | } |
| 593 | } |
| 594 | } |
| 595 | |
| 596 | /////////////////////////////////////////////////////////////////////////////// |
| 597 | // Addition/ subtraction |
| 598 | |
| 599 | /** |
| 600 | * \ingroup Addition |
| 601 | * |
| 602 | * Sets \c rop to the sum of \c rop and \c op. |
| 603 | * |
| 604 | * \todo This is currently implemented by creating a copy! |
| 605 | */ |
| 606 | void _fmpq_poly_add_in_place(fmpq_poly_ptr rop, const fmpq_poly_ptr op) |
| 607 | { |
| 608 | if (rop == op) /* If rop == op, return 2 * op */ |
| 609 | { |
| 610 | fmpq_poly_scalar_mul_si(rop, rop, 2l); |
| 611 | return; |
| 612 | } |
| 613 | |
| 614 | if (fmpq_poly_is_zero(rop)) /* Is one of the polynomials zero? */ |
| 615 | { |
| 616 | fmpq_poly_set(rop, op); |
| 617 | return; |
| 618 | } |
| 619 | if (fmpq_poly_is_zero(op)) |
| 620 | { |
| 621 | return; |
| 622 | } |
| 623 | |
| 624 | /* Now we may assume that rop and op refer to distinct objects in */ |
| 625 | /* memory and that both polynomials are non-zero. */ |
| 626 | fmpq_poly_t t; |
| 627 | fmpq_poly_init(t); |
| 628 | fmpq_poly_add(t, rop, op); |
| 629 | fmpq_poly_swap(rop, t); |
| 630 | fmpq_poly_clear(t); |
| 631 | } |
| 632 | |
| 633 | /** |
| 634 | * \ingroup Addition |
| 635 | * |
| 636 | * Sets \c rop to the sum of \c op1 and \c op2. |
| 637 | */ |
| 638 | void fmpq_poly_add(fmpq_poly_ptr rop, const fmpq_poly_ptr op1, const fmpq_poly_ptr op2) |
| 639 | { |
| 640 | fmpz_poly_t tpoly; |
| 641 | fmpz_t tfmpz; |
| 642 | unsigned long limbs; |
| 643 | |
| 644 | if (op1 == op2) /* If op1 == op2, return 2 * op1 */ |
| 645 | { |
| 646 | fmpq_poly_scalar_mul_si(rop, op1, 2l); |
| 647 | return; |
| 648 | } |
| 649 | |
| 650 | if (rop == op1) /* Is rop == op1 or rop == op2? */ |
| 651 | { |
| 652 | _fmpq_poly_add_in_place(rop, op2); |
| 653 | return; |
| 654 | } |
| 655 | if (rop == op2) |
| 656 | { |
| 657 | _fmpq_poly_add_in_place(rop, op1); |
| 658 | return; |
| 659 | } |
| 660 | |
| 661 | /* From here on, we may assume that rop, op1 and op2 all refer to */ |
| 662 | /* distinct objects in memory, although they may still be equal. */ |
| 663 | |
| 664 | if (_fmpq_poly_den_is_one(op1)) |
| 665 | { |
| 666 | if (_fmpq_poly_den_is_one(op2)) |
| 667 | { |
| 668 | fmpz_poly_add(rop->num, op1->num, op2->num); |
| 669 | if (rop->den != NULL) |
| 670 | fmpz_set_si(rop->den, 1); |
| 671 | } |
| 672 | else |
| 673 | { |
| 674 | fmpz_poly_scalar_mul_fmpz(rop->num, op1->num, op2->den); |
| 675 | fmpz_poly_add(rop->num, rop->num, op2->num); |
| 676 | fmpq_poly_set_den(rop, op2->den); |
| 677 | fmpq_poly_canonicalize(rop, NULL); |
| 678 | } |
| 679 | } |
| 680 | else |
| 681 | { |
| 682 | if (_fmpq_poly_den_is_one(op2)) |
| 683 | { |
| 684 | fmpz_poly_scalar_mul_fmpz(rop->num, op2->num, op1->den); |
| 685 | fmpz_poly_add(rop->num, op1->num, rop->num); |
| 686 | fmpq_poly_set_den(rop, op1->den); |
| 687 | fmpq_poly_canonicalize(rop, NULL); |
| 688 | } |
| 689 | else |
| 690 | { |
| 691 | fmpz_poly_init(tpoly); |
| 692 | |
| 693 | limbs = fmpz_size(op1->den) + fmpz_size(op2->den); |
| 694 | _fmpq_poly_den_fit_limbs(rop, limbs); |
| 695 | |
| 696 | limbs = FLINT_MAX(limbs, fmpz_size(op2->den) + op1->num->limbs); |
| 697 | limbs = FLINT_MAX(limbs, fmpz_size(op1->den) + op2->num->limbs); |
| 698 | tfmpz = fmpz_init(limbs); |
| 699 | |
| 700 | fmpz_gcd(rop->den, op1->den, op2->den); |
| 701 | fmpz_tdiv(tfmpz, op2->den, rop->den); |
| 702 | fmpz_poly_scalar_mul_fmpz(rop->num, op1->num, tfmpz); |
| 703 | fmpz_tdiv(tfmpz, op1->den, rop->den); |
| 704 | fmpz_poly_scalar_mul_fmpz(tpoly, op2->num, tfmpz); |
| 705 | fmpz_poly_add(rop->num, rop->num, tpoly); |
| 706 | fmpz_mul(rop->den, tfmpz, op2->den); |
| 707 | |
| 708 | fmpq_poly_canonicalize(rop, tfmpz); |
| 709 | |
| 710 | fmpz_poly_clear(tpoly); |
| 711 | fmpz_clear(tfmpz); |
| 712 | } |
| 713 | } |
| 714 | } |
| 715 | |
| 716 | /** |
| 717 | * \ingroup Addition |
| 718 | * |
| 719 | * Sets \c rop to the difference of \c rop and \c op. |
| 720 | * |
| 721 | * \note This is implemented using the methods #fmpq_poly_neg() and |
| 722 | * #_fmpq_poly_add_in_place(). |
| 723 | */ |
| 724 | void _fmpq_poly_sub_in_place(fmpq_poly_ptr rop, const fmpq_poly_ptr op) |
| 725 | { |
| 726 | if (rop == op) |
| 727 | { |
| 728 | fmpq_poly_zero(rop); |
| 729 | return; |
| 730 | } |
| 731 | |
| 732 | fmpq_poly_neg(rop, rop); |
| 733 | _fmpq_poly_add_in_place(rop, op); |
| 734 | fmpq_poly_neg(rop, rop); |
| 735 | } |
| 736 | |
| 737 | /** |
| 738 | * \ingroup Addition |
| 739 | * |
| 740 | * Sets \c rop to the difference of \c op1 and \c op2. |
| 741 | */ |
| 742 | void fmpq_poly_sub(fmpq_poly_ptr rop, const fmpq_poly_ptr op1, const fmpq_poly_ptr op2) |
| 743 | { |
| 744 | fmpz_poly_t tpoly; |
| 745 | fmpz_t tfmpz; |
| 746 | unsigned long limbs; |
| 747 | |
| 748 | if (op1 == op2) |
| 749 | { |
| 750 | fmpq_poly_zero(rop); |
| 751 | return; |
| 752 | } |
| 753 | if (rop == op1) |
| 754 | { |
| 755 | _fmpq_poly_sub_in_place(rop, op2); |
| 756 | return; |
| 757 | } |
| 758 | if (rop == op2) |
| 759 | { |
| 760 | _fmpq_poly_sub_in_place(rop, op1); |
| 761 | fmpq_poly_neg(rop, rop); |
| 762 | return; |
| 763 | } |
| 764 | |
| 765 | /* From here on, we know that rop, op1 and op2 refer to distinct objects */ |
| 766 | /* in memory, although as rational functions they may still be equal */ |
| 767 | |
| 768 | if (_fmpq_poly_den_is_one(op1)) |
| 769 | { |
| 770 | if (_fmpq_poly_den_is_one(op2)) |
| 771 | { |
| 772 | fmpz_poly_sub(rop->num, op1->num, op2->num); |
| 773 | if (rop->den != NULL) |
| 774 | fmpz_set_si(rop->den, 1); |
| 775 | } |
| 776 | else |
| 777 | { |
| 778 | fmpz_poly_scalar_mul_fmpz(rop->num, op1->num, op2->den); |
| 779 | fmpz_poly_sub(rop->num, rop->num, op2->num); |
| 780 | fmpq_poly_set_den(rop, op2->den); |
| 781 | fmpq_poly_canonicalize(rop, NULL); |
| 782 | } |
| 783 | } |
| 784 | else |
| 785 | { |
| 786 | if (_fmpq_poly_den_is_one(op2)) |
| 787 | { |
| 788 | fmpz_poly_scalar_mul_fmpz(rop->num, op2->num, op1->den); |
| 789 | fmpz_poly_sub(rop->num, op1->num, rop->num); |
| 790 | fmpq_poly_set_den(rop, op1->den); |
| 791 | fmpq_poly_canonicalize(rop, NULL); |
| 792 | } |
| 793 | else |
| 794 | { |
| 795 | fmpz_poly_init(tpoly); |
| 796 | |
| 797 | limbs = fmpz_size(op1->den) + fmpz_size(op2->den); |
| 798 | _fmpq_poly_den_fit_limbs(rop, limbs); |
| 799 | |
| 800 | limbs = FLINT_MAX(limbs, fmpz_size(op2->den) + op1->num->limbs); |
| 801 | limbs = FLINT_MAX(limbs, fmpz_size(op1->den) + op2->num->limbs); |
| 802 | tfmpz = fmpz_init(limbs); |
| 803 | |
| 804 | fmpz_gcd(rop->den, op1->den, op2->den); |
| 805 | fmpz_tdiv(tfmpz, op2->den, rop->den); |
| 806 | fmpz_poly_scalar_mul_fmpz(rop->num, op1->num, tfmpz); |
| 807 | fmpz_tdiv(tfmpz, op1->den, rop->den); |
| 808 | fmpz_poly_scalar_mul_fmpz(tpoly, op2->num, tfmpz); |
| 809 | fmpz_poly_sub(rop->num, rop->num, tpoly); |
| 810 | fmpz_mul(rop->den, tfmpz, op2->den); |
| 811 | |
| 812 | fmpq_poly_canonicalize(rop, tfmpz); |
| 813 | |
| 814 | fmpz_poly_clear(tpoly); |
| 815 | fmpz_clear(tfmpz); |
| 816 | } |
| 817 | } |
| 818 | } |
| 819 | |
| 820 | /** |
| 821 | * \ingroup Addition |
| 822 | * |
| 823 | * Sets \c rop to <tt>rop + op1 * op2</tt>. |
| 824 | * |
| 825 | * Currently, this method refers to the methods #fmpq_poly_mul() and |
| 826 | * #fmpq_poly_add() to form the result in the naive way. |
| 827 | * |
| 828 | * \todo Implement this method more efficiently. |
| 829 | */ |
| 830 | void fmpq_poly_addmul(fmpq_poly_ptr rop, const fmpq_poly_ptr op1, const fmpq_poly_ptr op2) |
| 831 | { |
| 832 | fmpq_poly_t t; |
| 833 | fmpq_poly_init(t); |
| 834 | fmpq_poly_mul(t, op1, op2); |
| 835 | fmpq_poly_add(rop, rop, t); |
| 836 | fmpq_poly_clear(t); |
| 837 | } |
| 838 | |
| 839 | /** |
| 840 | * \ingroup Addition |
| 841 | * |
| 842 | * Sets \c rop to <tt>rop - op1 * op2</tt>. |
| 843 | * |
| 844 | * Currently, this method refers to the methods #fmpq_poly_mul() and |
| 845 | * #fmpq_poly_sub() to form the result in the naive way. |
| 846 | * |
| 847 | * \todo Implement this method more efficiently. |
| 848 | */ |
| 849 | void fmpq_poly_submul(fmpq_poly_ptr rop, const fmpq_poly_ptr op1, const fmpq_poly_ptr op2) |
| 850 | { |
| 851 | fmpq_poly_t t; |
| 852 | fmpq_poly_init(t); |
| 853 | fmpq_poly_mul(t, op1, op2); |
| 854 | fmpq_poly_sub(rop, rop, t); |
| 855 | fmpq_poly_clear(t); |
| 856 | } |
| 857 | |
| 858 | /////////////////////////////////////////////////////////////////////////////// |
| 859 | // Scalar multiplication and division |
| 860 | |
| 861 | /** |
| 862 | * \ingroup ScalarMul |
| 863 | * |
| 864 | * Sets \c rop to the scalar product of \c op and the integer \c x. |
| 865 | */ |
| 866 | void fmpq_poly_scalar_mul_si(fmpq_poly_ptr rop, const fmpq_poly_ptr op, long x) |
| 867 | { |
| 868 | fmpz_t fx, g, t; |
| 869 | |
| 870 | if (_fmpq_poly_den_is_one(op)) |
| 871 | { |
| 872 | fmpz_poly_scalar_mul_si(rop->num, op->num, x); |
| 873 | if (rop->den != NULL) |
| 874 | fmpz_set_si(rop->den, 1); |
| 875 | } |
| 876 | else |
| 877 | { |
| 878 | g = fmpz_init(fmpz_size(op->den)); |
| 879 | fx = fmpz_init(1); |
| 880 | fmpz_set_si(fx, x); |
| 881 | fmpz_gcd(g, op->den, fx); |
| 882 | fmpz_abs(g, g); |
| 883 | if (fmpz_is_one(g)) |
| 884 | { |
| 885 | fmpz_poly_scalar_mul_si(rop->num, op->num, x); |
| 886 | fmpq_poly_set_den(rop, op->den); |
| 887 | } |
| 888 | else |
| 889 | { |
| 890 | if (rop == op) |
| 891 | { |
| 892 | t = fmpz_init(fmpz_size(op->den)); |
| 893 | fmpz_tdiv(t, fx, g); |
| 894 | fmpz_poly_scalar_mul_fmpz(rop->num, op->num, t); |
| 895 | fmpz_tdiv(t, op->den, g); |
| 896 | fmpz_clear(rop->den); |
| 897 | rop->den = t; |
| 898 | } |
| 899 | else |
| 900 | { |
| 901 | _fmpq_poly_den_fit_limbs(rop, fmpz_size(op->den)); |
| 902 | fmpz_tdiv(rop->den, fx, g); |
| 903 | fmpz_poly_scalar_mul_fmpz(rop->num, op->num, rop->den); |
| 904 | fmpz_tdiv(rop->den, op->den, g); |
| 905 | } |
| 906 | } |
| 907 | fmpz_clear(g); |
| 908 | fmpz_clear(fx); |
| 909 | } |
| 910 | } |
| 911 | |
| 912 | /** |
| 913 | * \ingroup ScalarMul |
| 914 | * |
| 915 | * Sets \c rop to the scalar multiple of \c op with the \c mpz_t \c x. |
| 916 | */ |
| 917 | void fmpq_poly_scalar_mul_mpz(fmpq_poly_ptr rop, const fmpq_poly_ptr op, const mpz_t x) |
| 918 | { |
| 919 | fmpz_t fx, g, t; |
| 920 | |
| 921 | if (_fmpq_poly_den_is_one(op)) |
| 922 | { |
| 923 | fmpz_poly_scalar_mul_mpz(rop->num, op->num, x); |
| 924 | if (rop->den != NULL) |
| 925 | fmpz_set_si(rop->den, 1); |
| 926 | } |
| 927 | else |
| 928 | { |
| 929 | g = fmpz_init(fmpz_size(op->den)); |
| 930 | fx = fmpz_init(mpz_size(x)); |
| 931 | mpz_to_fmpz(fx, x); |
| 932 | fmpz_gcd(g, op->den, fx); |
| 933 | fmpz_abs(g, g); |
| 934 | if (fmpz_is_one(g)) |
| 935 | { |
| 936 | fmpz_poly_scalar_mul_mpz(rop->num, op->num, x); |
| 937 | fmpq_poly_set_den(rop, op->den); |
| 938 | } |
| 939 | else |
| 940 | { |
| 941 | if (rop == op) |
| 942 | { |
| 943 | t = fmpz_init(fmpz_size(op->den)); |
| 944 | fmpz_tdiv(t, fx, g); |
| 945 | fmpz_poly_scalar_mul_fmpz(rop->num, op->num, t); |
| 946 | fmpz_tdiv(t, op->den, g); |
| 947 | fmpz_clear(rop->den); |
| 948 | rop->den = t; |
| 949 | } |
| 950 | else |
| 951 | { |
| 952 | _fmpq_poly_den_fit_limbs(rop, fmpz_size(op->den)); |
| 953 | fmpz_tdiv(rop->den, fx, g); |
| 954 | fmpz_poly_scalar_mul_fmpz(rop->num, op->num, rop->den); |
| 955 | fmpz_tdiv(rop->den, op->den, g); |
| 956 | } |
| 957 | } |
| 958 | fmpz_clear(g); |
| 959 | fmpz_clear(fx); |
| 960 | } |
| 961 | } |
| 962 | |
| 963 | /** |
| 964 | * \ingroup ScalarMul |
| 965 | * |
| 966 | * Sets \c rop to the scalar multiple of \c op with the \c mpq_t \c x. |
| 967 | */ |
| 968 | void fmpq_poly_scalar_mul_mpq(fmpq_poly_ptr rop, const fmpq_poly_ptr op, const mpq_t x) |
| 969 | { |
| 970 | fmpz_t s, t; |
| 971 | |
| 972 | fmpz_poly_scalar_mul_mpz(rop->num, op->num, mpq_numref(x)); |
| 973 | if (_fmpq_poly_den_is_one(op)) |
| 974 | { |
| 975 | _fmpq_poly_den_fit_limbs(rop, mpz_size(mpq_denref(x))); |
| 976 | mpz_to_fmpz(rop->den, mpq_denref(x)); |
| 977 | } |
| 978 | else |
| 979 | { |
| 980 | s = fmpz_init(mpz_size(mpq_denref(x))); |
| 981 | t = fmpz_init(fmpz_size(op->den)); |
| 982 | mpz_to_fmpz(s, mpq_denref(x)); |
| 983 | fmpz_set(t, op->den); |
| 984 | _fmpq_poly_den_fit_limbs(rop, fmpz_size(s) + fmpz_size(t)); |
| 985 | fmpz_mul(rop->den, s, t); |
| 986 | fmpz_clear(s); |
| 987 | fmpz_clear(t); |
| 988 | } |
| 989 | fmpq_poly_canonicalize(rop, NULL); |
| 990 | } |
| 991 | |
| 992 | /** |
| 993 | * /ingroup ScalarMul |
| 994 | * |
| 995 | * Divides \c rop by the integer \c x. |
| 996 | * |
| 997 | * Assumes that \c x is non-zero. Otherwise, an exception is raised in the |
| 998 | * form of an <tt>abort</tt> statement. |
| 999 | */ |
| 1000 | void _fmpq_poly_scalar_div_si_in_place(fmpq_poly_ptr rop, long x) |
| 1001 | { |
| 1002 | fmpz_t cont, fx, gcd, t; |
| 1003 | |
| 1004 | /* Assertion! */ |
| 1005 | if (x == 0l) |
| 1006 | { |
| 1007 | printf("ERROR (_fmpq_poly_scalar_div_si_in_place). Division by zero.\n"); |
| 1008 | abort(); |
| 1009 | } |
| 1010 | |
| 1011 | if (x == 1l) |
| 1012 | { |
| 1013 | return; |
| 1014 | } |
| 1015 | |
| 1016 | cont = fmpz_init(rop->num->limbs); |
| 1017 | fmpz_poly_content(cont, rop->num); |
| 1018 | fmpz_abs(cont, cont); |
| 1019 | |
| 1020 | if (fmpz_is_one(cont)) |
| 1021 | { |
| 1022 | if (x > 0l) |
| 1023 | { |
| 1024 | if (rop->den == NULL) |
| 1025 | { |
| 1026 | rop->den = fmpz_init(1); |
| 1027 | fmpz_set_si(rop->den, x); |
| 1028 | } |
| 1029 | else |
| 1030 | { |
| 1031 | t = fmpz_init(fmpz_size(rop->den) + 1); |
| 1032 | fmpz_mul_ui(t, rop->den, (unsigned long) x); |
| 1033 | fmpz_clear(rop->den); |
| 1034 | rop->den = t; |
| 1035 | } |
| 1036 | } |
| 1037 | else |
| 1038 | { |
| 1039 | fmpz_poly_neg(rop->num, rop->num); |
| 1040 | if (rop->den == NULL) |
| 1041 | { |
| 1042 | rop->den = fmpz_init(1); |
| 1043 | fmpz_set_si(rop->den, -x); |
| 1044 | } |
| 1045 | else |
| 1046 | { |
| 1047 | t = fmpz_init(fmpz_size(rop->den) + 1); |
| 1048 | fmpz_mul_ui(t, rop->den, (unsigned long) -x); |
| 1049 | fmpz_clear(rop->den); |
| 1050 | rop->den = t; |
| 1051 | } |
| 1052 | } |
| 1053 | fmpz_clear(cont); |
| 1054 | return; |
| 1055 | } |
| 1056 | |
| 1057 | fx = fmpz_init(1); |
| 1058 | fmpz_set_si(fx, x); |
| 1059 | |
| 1060 | gcd = fmpz_init(FLINT_MAX(rop->num->limbs, fmpz_size(fx))); |
| 1061 | fmpz_gcd(gcd, cont, fx); |
| 1062 | fmpz_abs(gcd, gcd); |
| 1063 | |
| 1064 | if (fmpz_is_one(gcd)) |
| 1065 | { |
| 1066 | if (x > 0l) |
| 1067 | { |
| 1068 | if (rop->den == NULL) |
| 1069 | { |
| 1070 | rop->den = fmpz_init(1); |
| 1071 | fmpz_set_si(rop->den, x); |
| 1072 | } |
| 1073 | else |
| 1074 | { |
| 1075 | t = fmpz_init(fmpz_size(rop->den) + 1); |
| 1076 | fmpz_mul_ui(t, rop->den, (unsigned long) x); |
| 1077 | fmpz_clear(rop->den); |
| 1078 | rop->den = t; |
| 1079 | } |
| 1080 | } |
| 1081 | else |
| 1082 | { |
| 1083 | fmpz_poly_neg(rop->num, rop->num); |
| 1084 | if (rop->den == NULL) |
| 1085 | { |
| 1086 | rop->den = fmpz_init(1); |
| 1087 | fmpz_set_si(rop->den, -x); |
| 1088 | } |
| 1089 | else |
| 1090 | { |
| 1091 | t = fmpz_init(fmpz_size(rop->den) + 1); |
| 1092 | fmpz_mul_ui(t, rop->den, (unsigned long) -x); |
| 1093 | fmpz_clear(rop->den); |
| 1094 | rop->den = t; |
| 1095 | } |
| 1096 | } |
| 1097 | } |
| 1098 | else |
| 1099 | { |
| 1100 | fmpz_poly_scalar_div_fmpz(rop->num, rop->num, gcd); |
| 1101 | if (rop->den == NULL) |
| 1102 | { |
| 1103 | rop->den = fmpz_init(1); |
| 1104 | fmpz_tdiv(rop->den, fx, gcd); |
| 1105 | } |
| 1106 | else |
| 1107 | { |
| 1108 | fmpz_tdiv(cont, fx, gcd); |
| 1109 | fx = fmpz_realloc(fx, fmpz_size(rop->den)); |
| 1110 | fmpz_set(fx, rop->den); |
| 1111 | rop->den = fmpz_realloc(rop->den, fmpz_size(rop->den) + 1); |
| 1112 | fmpz_mul(rop->den, fx, cont); |
| 1113 | } |
| 1114 | if (x < 0l) |
| 1115 | { |
| 1116 | fmpz_poly_neg(rop->num, rop->num); |
| 1117 | fmpz_neg(rop->den, rop->den); |
| 1118 | } |
| 1119 | } |
| 1120 | |
| 1121 | fmpz_clear(cont); |
| 1122 | fmpz_clear(fx); |
| 1123 | fmpz_clear(gcd); |
| 1124 | } |
| 1125 | |
| 1126 | |
| 1127 | /** |
| 1128 | * \ingroup ScalarMul |
| 1129 | * |
| 1130 | * Sets \c rop to the scalar multiple of \c op with the multiplicative inverse |
| 1131 | * of the integer \c x. |
| 1132 | * |
| 1133 | * Assumes that \c x is non-zero. Otherwise, an exception is raised in the |
| 1134 | * form of an <tt>abort</tt> statement. |
| 1135 | */ |
| 1136 | void fmpq_poly_scalar_div_si(fmpq_poly_ptr rop, const fmpq_poly_ptr op, long x) |
| 1137 | { |
| 1138 | fmpz_t cont, fx, gcd; |
| 1139 | |
| 1140 | /* Assertion! */ |
| 1141 | if (x == 0l) |
| 1142 | { |
| 1143 | printf("ERROR (fmpq_poly_scalar_div_si). Division by zero.\n"); |
| 1144 | abort(); |
| 1145 | } |
| 1146 | |
| 1147 | if (rop == op) |
| 1148 | { |
| 1149 | _fmpq_poly_scalar_div_si_in_place(rop, x); |
| 1150 | return; |
| 1151 | } |
| 1152 | |
| 1153 | /* From here on, we may assume that rop and op denote two different */ |
| 1154 | /* rational polynomials (as objects in memory). */ |
| 1155 | |
| 1156 | if (x == 1l) |
| 1157 | { |
| 1158 | fmpq_poly_set(rop, op); |
| 1159 | return; |
| 1160 | } |
| 1161 | |
| 1162 | cont = fmpz_init(op->num->limbs); |
| 1163 | fmpz_poly_content(cont, op->num); |
| 1164 | fmpz_abs(cont, cont); |
| 1165 | |
| 1166 | if (fmpz_is_one(cont)) |
| 1167 | { |
| 1168 | if (x > 0l) |
| 1169 | { |
| 1170 | fmpz_poly_set(rop->num, op->num); |
| 1171 | if (op->den == NULL) |
| 1172 | { |
| 1173 | if (rop->den == NULL) |
| 1174 | rop->den = fmpz_init(1); |
| 1175 | fmpz_set_si(rop->den, x); |
| 1176 | } |
| 1177 | else |
| 1178 | { |
| 1179 | _fmpq_poly_den_fit_limbs(rop, fmpz_size(op->den) + 1); |
| 1180 | fmpz_mul_ui(rop->den, op->den, (unsigned long) x); |
| 1181 | } |
| 1182 | } |
| 1183 | else |
| 1184 | { |
| 1185 | fmpz_poly_neg(rop->num, op->num); |
| 1186 | if (op->den == NULL) |
| 1187 | { |
| 1188 | if (rop->den == NULL) |
| 1189 | rop->den = fmpz_init(1); |
| 1190 | fmpz_set_si(rop->den, -x); |
| 1191 | } |
| 1192 | else |
| 1193 | { |
| 1194 | _fmpq_poly_den_fit_limbs(rop, fmpz_size(op->den) + 1); |
| 1195 | fmpz_mul_ui(rop->den, op->den, (unsigned long) -x); |
| 1196 | } |
| 1197 | } |
| 1198 | fmpz_clear(cont); |
| 1199 | return; |
| 1200 | } |
| 1201 | |
| 1202 | fx = fmpz_init(1); |
| 1203 | fmpz_set_si(fx, x); |
| 1204 | |
| 1205 | gcd = fmpz_init(FLINT_MAX(op->num->limbs, fmpz_size(fx))); |
| 1206 | fmpz_gcd(gcd, cont, fx); |
| 1207 | fmpz_abs(gcd, gcd); |
| 1208 | |
| 1209 | if (fmpz_is_one(gcd)) |
| 1210 | { |
| 1211 | if (x > 0l) |
| 1212 | { |
| 1213 | fmpz_poly_set(rop->num, op->num); |
| 1214 | if (op->den == NULL) |
| 1215 | { |
| 1216 | if (rop->den == NULL) |
| 1217 | rop->den = fmpz_init(1); |
| 1218 | fmpz_set_si(rop->den, x); |
| 1219 | } |
| 1220 | else |
| 1221 | { |
| 1222 | _fmpq_poly_den_fit_limbs(rop, fmpz_size(op->den) + 1); |
| 1223 | fmpz_mul_ui(rop->den, op->den, (unsigned long) x); |
| 1224 | } |
| 1225 | } |
| 1226 | else |
| 1227 | { |
| 1228 | fmpz_poly_neg(rop->num, op->num); |
| 1229 | if (op->den == NULL) |
| 1230 | { |
| 1231 | if (rop->den == NULL) |
| 1232 | rop->den = fmpz_init(1); |
| 1233 | fmpz_set_si(rop->den, -x); |
| 1234 | } |
| 1235 | else |
| 1236 | { |
| 1237 | _fmpq_poly_den_fit_limbs(rop, fmpz_size(op->den) + 1); |
| 1238 | fmpz_mul_ui(rop->den, op->den, (unsigned long) -x); |
| 1239 | } |
| 1240 | } |
| 1241 | } |
| 1242 | else |
| 1243 | { |
| 1244 | fmpz_poly_scalar_div_fmpz(rop->num, op->num, gcd); |
| 1245 | if (_fmpq_poly_den_is_one(op)) |
| 1246 | { |
| 1247 | _fmpq_poly_den_fit_limbs(rop, fmpz_size(fx)); |
| 1248 | fmpz_tdiv(rop->den, fx, gcd); |
| 1249 | } |
| 1250 | else |
| 1251 | { |
| 1252 | _fmpq_poly_den_fit_limbs(rop, fmpz_size(op->den) + fmpz_size(fx)); |
| 1253 | fmpz_tdiv(cont, fx, gcd); /* fx and gcd are word-sized */ |
| 1254 | fmpz_mul(rop->den, op->den, cont); |
| 1255 | } |
| 1256 | if (x < 0l) |
| 1257 | { |
| 1258 | fmpz_poly_neg(rop->num, rop->num); |
| 1259 | fmpz_neg(rop->den, rop->den); |
| 1260 | } |
| 1261 | } |
| 1262 | |
| 1263 | fmpz_clear(cont); |
| 1264 | fmpz_clear(fx); |
| 1265 | fmpz_clear(gcd); |
| 1266 | } |
| 1267 | |
| 1268 | /** |
| 1269 | * \ingroup ScalarMul |
| 1270 | * |
| 1271 | * Sets \c rop to the scalar multiple of \c op with the multiplicative inverse |
| 1272 | * of the integer \c x. |
| 1273 | * |
| 1274 | * Assumes that \c x is non-zero. Otherwise, an exception is raised in the |
| 1275 | * form of an <tt>abort</tt> statement. |
| 1276 | */ |
| 1277 | void _fmpq_poly_scalar_div_mpz_in_place(fmpq_poly_ptr rop, const mpz_t x) |
| 1278 | { |
| 1279 | fmpz_t cont, fx, gcd, t; |
| 1280 | |
| 1281 | /* Assertion! */ |
| 1282 | if (mpz_sgn(x) == 0) |
| 1283 | { |
| 1284 | printf("ERROR (_fmpq_poly_scalar_div_mpz_in_place). Division by zero.\n"); |
| 1285 | abort(); |
| 1286 | } |
| 1287 | |
| 1288 | if (mpz_cmp_si(x, 1) == 0) |
| 1289 | return; |
| 1290 | |
| 1291 | cont = fmpz_init(rop->num->limbs); |
| 1292 | fmpz_poly_content(cont, rop->num); |
| 1293 | fmpz_abs(cont, cont); |
| 1294 | |
| 1295 | if (fmpz_is_one(cont)) |
| 1296 | { |
| 1297 | if (rop->den == NULL) |
| 1298 | { |
| 1299 | rop->den = fmpz_init(mpz_size(x)); |
| 1300 | mpz_to_fmpz(rop->den, x); |
| 1301 | } |
| 1302 | else |
| 1303 | { |
| 1304 | fx = fmpz_init(mpz_size(x)); |
| 1305 | mpz_to_fmpz(fx, x); |
| 1306 | t = fmpz_init(fmpz_size(rop->den) + mpz_size(x)); |
| 1307 | fmpz_mul(t, rop->den, fx); |
| 1308 | fmpz_clear(rop->den); |
| 1309 | rop->den = t; |
| 1310 | fmpz_clear(fx); |
| 1311 | } |
| 1312 | if (mpz_sgn(x) < 0) |
| 1313 | { |
| 1314 | fmpz_poly_neg(rop->num, rop->num); |
| 1315 | fmpz_neg(rop->den, rop->den); |
| 1316 | } |
| 1317 | fmpz_clear(cont); |
| 1318 | return; |
| 1319 | } |
| 1320 | |
| 1321 | fx = fmpz_init(mpz_size(x)); |
| 1322 | mpz_to_fmpz(fx, x); |
| 1323 | |
| 1324 | gcd = fmpz_init(FLINT_MAX(rop->num->limbs, fmpz_size(fx))); |
| 1325 | fmpz_gcd(gcd, cont, fx); |
| 1326 | fmpz_abs(gcd, gcd); |
| 1327 | |
| 1328 | if (fmpz_is_one(gcd)) |
| 1329 | { |
| 1330 | if (rop->den == NULL) |
| 1331 | { |
| 1332 | rop->den = fmpz_init(mpz_size(x)); |
| 1333 | mpz_to_fmpz(rop->den, x); |
| 1334 | } |
| 1335 | else |
| 1336 | { |
| 1337 | t = fmpz_init(fmpz_size(rop->den) + mpz_size(x)); |
| 1338 | fmpz_mul(t, rop->den, fx); |
| 1339 | fmpz_clear(rop->den); |
| 1340 | rop->den = t; |
| 1341 | } |
| 1342 | if (mpz_sgn(x) < 0) |
| 1343 | { |
| 1344 | fmpz_poly_neg(rop->num, rop->num); |
| 1345 | fmpz_neg(rop->den, rop->den); |
| 1346 | } |
| 1347 | } |
| 1348 | else |
| 1349 | { |
| 1350 | fmpz_poly_scalar_div_fmpz(rop->num, rop->num, gcd); |
| 1351 | if (rop->den == NULL) |
| 1352 | { |
| 1353 | rop->den = fmpz_init(fmpz_size(fx)); |
| 1354 | fmpz_tdiv(rop->den, fx, gcd); |
| 1355 | } |
| 1356 | else |
| 1357 | { |
| 1358 | cont = fmpz_realloc(cont, fmpz_size(fx)); |
| 1359 | fmpz_tdiv(cont, fx, gcd); |
| 1360 | fx = fmpz_realloc(fx, fmpz_size(rop->den)); |
| 1361 | fmpz_set(fx, rop->den); |
| 1362 | _fmpq_poly_den_fit_limbs(rop, fmpz_size(rop->den) + fmpz_size(cont)); |
| 1363 | fmpz_mul(rop->den, fx, cont); |
| 1364 | } |
| 1365 | if (mpz_sgn(x) < 0) |
| 1366 | { |
| 1367 | fmpz_poly_neg(rop->num, rop->num); |
| 1368 | fmpz_neg(rop->den, rop->den); |
| 1369 | } |
| 1370 | } |
| 1371 | |
| 1372 | fmpz_clear(cont); |
| 1373 | fmpz_clear(fx); |
| 1374 | fmpz_clear(gcd); |
| 1375 | } |
| 1376 | |
| 1377 | /** |
| 1378 | * \ingroup ScalarMul |
| 1379 | * |
| 1380 | * Sets \c rop to the scalar multiple of \c op with the multiplicative inverse |
| 1381 | * of the integer \c x. |
| 1382 | * |
| 1383 | * Assumes that \c x is non-zero. Otherwise, an exception is raised in the |
| 1384 | * form of an <tt>abort</tt> statement. |
| 1385 | */ |
| 1386 | void fmpq_poly_scalar_div_mpz(fmpq_poly_ptr rop, const fmpq_poly_ptr op, const mpz_t x) |
| 1387 | { |
| 1388 | fmpz_t cont, fx, gcd, t; |
| 1389 | |
| 1390 | /* Assertion! */ |
| 1391 | if (mpz_sgn(x) == 0) |
| 1392 | { |
| 1393 | printf("ERROR (fmpq_poly_scalar_div_mpz). Division by zero.\n"); |
| 1394 | abort(); |
| 1395 | } |
| 1396 | |
| 1397 | if (rop == op) |
| 1398 | { |
| 1399 | _fmpq_poly_scalar_div_mpz_in_place(rop, x); |
| 1400 | return; |
| 1401 | } |
| 1402 | |
| 1403 | /* From here on, we may assume that rop and op denote two different */ |
| 1404 | /* rational polynomials (as objects in memory). */ |
| 1405 | |
| 1406 | if (mpz_cmp_si(x, 1) == 0) |
| 1407 | { |
| 1408 | fmpq_poly_set(rop, op); |
| 1409 | return; |
| 1410 | } |
| 1411 | |
| 1412 | cont = fmpz_init(op->num->limbs); |
| 1413 | fmpz_poly_content(cont, op->num); |
| 1414 | fmpz_abs(cont, cont); |
| 1415 | |
| 1416 | if (fmpz_is_one(cont)) |
| 1417 | { |
| 1418 | if (op->den == NULL) |
| 1419 | { |
| 1420 | if (rop->den == NULL) |
| 1421 | rop->den = fmpz_init(mpz_size(x)); |
| 1422 | mpz_to_fmpz(rop->den, x); |
| 1423 | } |
| 1424 | else |
| 1425 | { |
| 1426 | t = fmpz_init(mpz_size(x)); |
| 1427 | mpz_to_fmpz(t, x); |
| 1428 | _fmpq_poly_den_fit_limbs(rop, fmpz_size(op->den) + fmpz_size(t)); |
| 1429 | fmpz_mul(rop->den, op->den, t); |
| 1430 | fmpz_clear(t); |
| 1431 | } |
| 1432 | if (mpz_sgn(x) > 0) |
| 1433 | { |
| 1434 | fmpz_poly_set(rop->num, op->num); |
| 1435 | } |
| 1436 | else |
| 1437 | { |
| 1438 | fmpz_poly_neg(rop->num, op->num); |
| 1439 | fmpz_neg(rop->den, rop->den); |
| 1440 | } |
| 1441 | fmpz_clear(cont); |
| 1442 | return; |
| 1443 | } |
| 1444 | |
| 1445 | fx = fmpz_init(mpz_size(x)); |
| 1446 | mpz_to_fmpz(fx, x); |
| 1447 | |
| 1448 | gcd = fmpz_init(FLINT_MAX(op->num->limbs, fmpz_size(fx))); |
| 1449 | fmpz_gcd(gcd, cont, fx); |
| 1450 | fmpz_abs(gcd, gcd); |
| 1451 | |
| 1452 | if (fmpz_is_one(gcd)) |
| 1453 | { |
| 1454 | if (op->den == NULL) |
| 1455 | { |
| 1456 | if (rop->den == NULL) |
| 1457 | rop->den = fmpz_init(mpz_size(x)); |
| 1458 | mpz_to_fmpz(rop->den, x); |
| 1459 | } |
| 1460 | else |
| 1461 | { |
| 1462 | t = fmpz_init(mpz_size(x)); |
| 1463 | mpz_to_fmpz(t, x); |
| 1464 | _fmpq_poly_den_fit_limbs(rop, fmpz_size(op->den) + fmpz_size(t)); |
| 1465 | fmpz_mul(rop->den, op->den, t); |
| 1466 | fmpz_clear(t); |
| 1467 | } |
| 1468 | if (mpz_sgn(x) > 0) |
| 1469 | { |
| 1470 | fmpz_poly_set(rop->num, op->num); |
| 1471 | } |
| 1472 | else |
| 1473 | { |
| 1474 | fmpz_poly_neg(rop->num, op->num); |
| 1475 | fmpz_neg(rop->den, rop->den); |
| 1476 | } |
| 1477 | } |
| 1478 | else |
| 1479 | { |
| 1480 | fmpz_poly_scalar_div_fmpz(rop->num, op->num, gcd); |
| 1481 | if (op->den == NULL) |
| 1482 | { |
| 1483 | if (rop->den == NULL) |
| 1484 | { |
| 1485 | rop->den = fmpz_init(fmpz_size(fx)); |
| 1486 | fmpz_tdiv(rop->den, fx, gcd); |
| 1487 | } |
| 1488 | else |
| 1489 | { |
| 1490 | rop->den = fmpz_realloc(rop->den, fmpz_size(fx)); |
| 1491 | fmpz_tdiv(rop->den, fx, gcd); |
| 1492 | } |
| 1493 | } |
| 1494 | else |
| 1495 | { |
| 1496 | cont = fmpz_realloc(cont, fmpz_size(fx)); |
| 1497 | fmpz_tdiv(cont, fx, gcd); |
| 1498 | _fmpq_poly_den_fit_limbs(rop, fmpz_size(op->den) + fmpz_size(cont)); |
| 1499 | fmpz_mul(rop->den, op->den, cont); |
| 1500 | } |
| 1501 | if (mpz_sgn(x) < 0) |
| 1502 | { |
| 1503 | fmpz_poly_neg(rop->num, rop->num); |
| 1504 | fmpz_neg(rop->den, rop->den); |
| 1505 | } |
| 1506 | } |
| 1507 | |
| 1508 | fmpz_clear(cont); |
| 1509 | fmpz_clear(fx); |
| 1510 | fmpz_clear(gcd); |
| 1511 | } |
| 1512 | |
| 1513 | /** |
| 1514 | * \ingroup ScalarMul |
| 1515 | * |
| 1516 | * Sets \c rop to the scalar multiple of \c op with the multiplicative inverse |
| 1517 | * of the rational \c x. |
| 1518 | * |
| 1519 | * Assumes that the rational \c x is in lowest terms and non-zero. If the |
| 1520 | * rational is not in lowest terms, the resulting value of <tt>rop</tt> is |
| 1521 | * undefined. If <tt>x</tt> is zero, an exception is raised in the form |
| 1522 | * of an <tt>abort</tt> statement. |
| 1523 | */ |
| 1524 | void fmpq_poly_scalar_div_mpq(fmpq_poly_ptr rop, const fmpq_poly_ptr op, const mpq_t x) |
| 1525 | { |
| 1526 | fmpz_t s, t; |
| 1527 | |
| 1528 | /* Assertion! */ |
| 1529 | if (mpz_sgn(mpq_numref(x)) == 0) |
| 1530 | { |
| 1531 | printf("ERROR (fmpq_poly_scalar_div_mpq). Division by zero.\n"); |
| 1532 | abort(); |
| 1533 | } |
| 1534 | |
| 1535 | fmpz_poly_scalar_mul_mpz(rop->num, op->num, mpq_denref(x)); |
| 1536 | if (_fmpq_poly_den_is_one(op)) |
| 1537 | { |
| 1538 | _fmpq_poly_den_fit_limbs(rop, mpz_size(mpq_numref(x))); |
| 1539 | mpz_to_fmpz(rop->den, mpq_numref(x)); |
| 1540 | } |
| 1541 | else |
| 1542 | { |
| 1543 | s = fmpz_init(mpz_size(mpq_numref(x))); |
| 1544 | t = fmpz_init(fmpz_size(op->den)); |
| 1545 | mpz_to_fmpz(s, mpq_numref(x)); |
| 1546 | fmpz_set(t, op->den); |
| 1547 | _fmpq_poly_den_fit_limbs(rop, fmpz_size(s) + fmpz_size(t)); |
| 1548 | fmpz_mul(rop->den, s, t); |
| 1549 | fmpz_clear(s); |
| 1550 | fmpz_clear(t); |
| 1551 | } |
| 1552 | fmpq_poly_canonicalize(rop, NULL); |
| 1553 | } |
| 1554 | |
| 1555 | /////////////////////////////////////////////////////////////////////////////// |
| 1556 | // Multiplication |
| 1557 | |
| 1558 | /** |
| 1559 | * \ingroup Multiplication |
| 1560 | * |
| 1561 | * Multiplies <tt>rop</tt> by <tt>op</tt>. |
| 1562 | */ |
| 1563 | void _fmpq_poly_mul_in_place(fmpq_poly_ptr rop, const fmpq_poly_ptr op) |
| 1564 | { |
| 1565 | fmpq_poly_t t; |
| 1566 | |
| 1567 | if (rop == op) |
| 1568 | { |
| 1569 | fmpz_poly_power(rop->num, op->num, 2ul); |
| 1570 | if (rop->den != NULL) |
| 1571 | { |
| 1572 | rop->den = fmpz_realloc(rop->den, 2 * fmpz_size(rop->den)); |
| 1573 | fmpz_pow_ui(rop->den, op->den, 2ul); |
| 1574 | } |
| 1575 | return; |
| 1576 | } |
| 1577 | |
| 1578 | if (fmpq_poly_is_zero(rop) || fmpq_poly_is_zero(op)) |
| 1579 | { |
| 1580 | fmpq_poly_zero(rop); |
| 1581 | return; |
| 1582 | } |
| 1583 | |
| 1584 | /* From here on, rop and op point to two different objects in memory, */ |
| 1585 | /* and these are both non-zero rational polynomials. */ |
| 1586 | |
| 1587 | fmpq_poly_init(t); |
| 1588 | fmpq_poly_mul(t, rop, op); |
| 1589 | fmpq_poly_swap(rop, t); |
| 1590 | fmpq_poly_clear(t); |
| 1591 | } |
| 1592 | |
| 1593 | /** |
| 1594 | * \ingroup Multiplication |
| 1595 | * |
| 1596 | * Sets \c rop to the product of \c op1 and \c op2. |
| 1597 | */ |
| 1598 | void fmpq_poly_mul(fmpq_poly_ptr rop, const fmpq_poly_ptr op1, const fmpq_poly_ptr op2) |
| 1599 | { |
| 1600 | unsigned long limbs; |
| 1601 | fmpz_t t, t1, t2; |
| 1602 | |
| 1603 | if (op1 == op2) |
| 1604 | { |
| 1605 | fmpz_poly_power(rop->num, op1->num, 2ul); |
| 1606 | if (_fmpq_poly_den_is_one(op1)) |
| 1607 | { |
| 1608 | if (rop->den != NULL) |
| 1609 | fmpz_set_si(rop->den, 1); |
| 1610 | } |
| 1611 | else |
| 1612 | { |
| 1613 | if (rop == op1) |
| 1614 | { |
| 1615 | t = fmpz_init(2 * fmpz_size(op1->den)); |
| 1616 | fmpz_pow_ui(t, op1->den, 2ul); |
| 1617 | fmpz_clear(rop->den); |
| 1618 | rop->den = t; |
| 1619 | } |
| 1620 | else |
| 1621 | { |
| 1622 | _fmpq_poly_den_fit_limbs(rop, 2 * fmpz_size(op1->den)); |
| 1623 | fmpz_pow_ui(rop->den, op1->den, 2ul); |
| 1624 | } |
| 1625 | } |
| 1626 | return; |
| 1627 | } |
| 1628 | |
| 1629 | if (rop == op1) |
| 1630 | { |
| 1631 | _fmpq_poly_mul_in_place(rop, op2); |
| 1632 | return; |
| 1633 | } |
| 1634 | if (rop == op2) |
| 1635 | { |
| 1636 | _fmpq_poly_mul_in_place(rop, op1); |
| 1637 | return; |
| 1638 | } |
| 1639 | |
| 1640 | if (_fmpq_poly_den_is_one(op1)) |
| 1641 | { |
| 1642 | /* Case 1. a.den == b.den == 1 */ |
| 1643 | if (_fmpq_poly_den_is_one(op2)) |
| 1644 | { |
| 1645 | fmpz_poly_mul(rop->num, op1->num, op2->num); |
| 1646 | if (rop->den != NULL) |
| 1647 | fmpz_set_si(rop->den, 1); |
| 1648 | } |
| 1649 | /* Case 2. a.den == 1, b.den > 1 */ |
| 1650 | else |
| 1651 | { |
| 1652 | _fmpq_poly_den_fit_limbs(rop, FLINT_MAX(op1->num->limbs, |
| 1653 | fmpz_size(op2->den))); |
| 1654 | |
| 1655 | fmpz_poly_content(rop->den, op1->num); |
| 1656 | fmpz_abs(rop->den, rop->den); |
| 1657 | |
| 1658 | if (fmpz_is_one(rop->den)) /* The content of a.num is 1 */ |
| 1659 | { |
| 1660 | fmpz_poly_mul(rop->num, op1->num, op2->num); |
| 1661 | fmpz_set(rop->den, op2->den); |
| 1662 | } |
| 1663 | else /* The content of a.num exceeds 1 */ |
| 1664 | { |
| 1665 | t1 = fmpz_init(FLINT_MAX(op1->num->limbs, fmpz_size(op2->den))); |
| 1666 | fmpz_gcd(t1, rop->den, op2->den); |
| 1667 | fmpz_abs(t1, t1); |
| 1668 | if (fmpz_is_one(t1)) |
| 1669 | { |
| 1670 | fmpz_poly_mul(rop->num, op1->num, op2->num); |
| 1671 | fmpz_set(rop->den, op2->den); |
| 1672 | } |
| 1673 | else |
| 1674 | { |
| 1675 | fmpz_poly_scalar_div_fmpz(rop->num, op1->num, t1); |
| 1676 | fmpz_poly_mul(rop->num, rop->num, op2->num); |
| 1677 | fmpz_tdiv(rop->den, op2->den, t1); |
| 1678 | } |
| 1679 | fmpz_clear(t1); |
| 1680 | } |
| 1681 | } |
| 1682 | } |
| 1683 | else |
| 1684 | { |
| 1685 | /* Case 3. a.den > 1, b.den == 1 */ |
| 1686 | if (_fmpq_poly_den_is_one(op2)) |
| 1687 | fmpq_poly_mul(rop, op2, op1); |
| 1688 | |
| 1689 | /* Case 4. a.den > 1, b.den > 1 */ |
| 1690 | else |
| 1691 | { |
| 1692 | limbs = FLINT_MAX(op1->num->limbs, op2->num->limbs); |
| 1693 | limbs = FLINT_MAX(limbs, fmpz_size(op1->den) + fmpz_size(op2->den)); |
| 1694 | _fmpq_poly_den_fit_limbs(rop, limbs); |
| 1695 | |
| 1696 | fmpz_poly_content(rop->den, op1->num); |
| 1697 | fmpz_abs(rop->den, rop->den); |
| 1698 | |
| 1699 | if (fmpz_is_one(rop->den)) |
| 1700 | { |
| 1701 | fmpz_poly_content(rop->den, op2->num); |
| 1702 | fmpz_abs(rop->den, rop->den); |
| 1703 | |
| 1704 | /* Case 4.A. c(a.num) == c(b.num) == 1 */ |
| 1705 | if (fmpz_is_one(rop->den)) |
| 1706 | { |
| 1707 | fmpz_poly_mul(rop->num, op1->num, op2->num); |
| 1708 | fmpz_mul(rop->den, op1->den, op2->den); |
| 1709 | } |
| 1710 | |
| 1711 | /* Case 4.B. c(a.num) == 1, c(b.num) > 1 */ |
| 1712 | else |
| 1713 | { |
| 1714 | t1 = fmpz_init(FLINT_MAX(op2->num->limbs, fmpz_size(op1->den))); |
| 1715 | fmpz_gcd(t1, rop->den, op1->den); |
| 1716 | fmpz_abs(t1, t1); |
| 1717 | if (fmpz_is_one(t1)) |
| 1718 | { |
| 1719 | fmpz_poly_mul(rop->num, op1->num, op2->num); |
| 1720 | fmpz_mul(rop->den, op1->den, op2->den); |
| 1721 | } |
| 1722 | else |
| 1723 | { |
| 1724 | fmpz_poly_scalar_div_fmpz(rop->num, op2->num, t1); |
| 1725 | fmpz_poly_mul(rop->num, op1->num, rop->num); |
| 1726 | fmpz_tdiv(rop->den, op1->den, t1); |
| 1727 | fmpz_mul(t1, rop->den, op2->den); |
| 1728 | fmpz_clear(rop->den); |
| 1729 | rop->den = t1; |
| 1730 | t1 = NULL; |
| 1731 | } |
| 1732 | if (t1 != NULL) |
| 1733 | fmpz_clear(t1); |
| 1734 | } |
| 1735 | } |
| 1736 | else /* The content of a.num exceeds 1 */ |
| 1737 | { |
| 1738 | limbs = FLINT_MAX(op1->num->limbs, op2->num->limbs); |
| 1739 | limbs = FLINT_MAX(limbs, fmpz_size(op1->den) + fmpz_size(op2->den)); |
| 1740 | t1 = fmpz_init(limbs); |
| 1741 | |
| 1742 | fmpz_poly_content(t1, op2->num); |
| 1743 | fmpz_abs(t1, t1); |
| 1744 | |
| 1745 | /* Case 4.C. c(a.num) > 1, c(b.num) == 1 */ |
| 1746 | if (fmpz_is_one(t1)) |
| 1747 | { |
| 1748 | fmpz_gcd(t1, rop->den, op2->den); |
| 1749 | fmpz_abs(t1, t1); |
| 1750 | if (fmpz_is_one(t1)) |
| 1751 | { |
| 1752 | fmpz_poly_mul(rop->num, op1->num, op2->num); |
| 1753 | fmpz_mul(rop->den, op1->den, op2->den); |
| 1754 | } |
| 1755 | else |
| 1756 | { |
| 1757 | fmpz_poly_scalar_div_fmpz(rop->num, op1->num, t1); |
| 1758 | fmpz_poly_mul(rop->num, rop->num, op2->num); |
| 1759 | fmpz_tdiv(rop->den, op2->den, t1); |
| 1760 | fmpz_mul(t1, op1->den, rop->den); |
| 1761 | fmpz_clear(rop->den); |
| 1762 | rop->den = t1; |
| 1763 | t1 = NULL; |
| 1764 | } |
| 1765 | } |
| 1766 | |
| 1767 | /* Case 4.D. This is the general case: positive */ |
| 1768 | /* denominators and positive contents. At this point, */ |
| 1769 | /* res.den == c(a.num) and t1 == c(b.num). */ |
| 1770 | else |
| 1771 | { |
| 1772 | limbs = FLINT_MAX(op1->num->limbs, op2->num->limbs); |
| 1773 | limbs = FLINT_MAX(limbs, fmpz_size(op1->den) + fmpz_size(op2->den)); |
| 1774 | t2 = fmpz_init(limbs); |
| 1775 | |
| 1776 | fmpz_gcd(t2, rop->den, op2->den); |
| 1777 | fmpz_abs(t2, t2); |
| 1778 | |
| 1779 | if (fmpz_is_one(t2)) |
| 1780 | { |
| 1781 | fmpz_gcd(t2, t1, op1->den); |
| 1782 | fmpz_abs(t2, t2); |
| 1783 | |
| 1784 | /* Case 4.D.1. c(a.num) and b.den are coprime, */ |
| 1785 | /* c(b.num) and a.den are coprime */ |
| 1786 | if (fmpz_is_one(t2)) |
| 1787 | { |
| 1788 | fmpz_poly_mul(rop->num, op1->num, op2->num); |
| 1789 | fmpz_mul(rop->den, op1->den, op2->den); |
| 1790 | } |
| 1791 | /* Case 4.D.2. c(a.num) and b.den are coprime, */ |
| 1792 | /* c(b.num) and a.den are *not* coprime */ |
| 1793 | else |
| 1794 | { |
| 1795 | fmpz_poly_scalar_div_fmpz(rop->num, op2->num, t2); |
| 1796 | fmpz_poly_mul(rop->num, op1->num, rop->num); |
| 1797 | fmpz_tdiv(t1, op1->den, t2); |
| 1798 | fmpz_mul(rop->den, t1, op2->den); |
| 1799 | } |
| 1800 | } |
| 1801 | else |
| 1802 | { |
| 1803 | fmpz_gcd(rop->den, t1, op1->den); |
| 1804 | fmpz_abs(rop->den, rop->den); |
| 1805 | |
| 1806 | /* Case 4.D.3. c(a.num) and b.den are *not* coprime,*/ |
| 1807 | // c(b.num) and a.den are coprime */ |
| 1808 | if (fmpz_is_one(rop->den)) |
| 1809 | { |
| 1810 | fmpz_poly_scalar_div_fmpz(rop->num, op1->num, t2); |
| 1811 | fmpz_poly_mul(rop->num, rop->num, op2->num); |
| 1812 | fmpz_tdiv(t1, op2->den, t2); |
| 1813 | fmpz_mul(rop->den, op1->den, t1); |
| 1814 | } |
| 1815 | |
| 1816 | /* Case 4.D.4. c(a.num) and b.den are *not* coprime,*/ |
| 1817 | /* c(b.num) and a.den are *not* coprime */ |
| 1818 | /* */ |
| 1819 | /* NOTES: How do we best handle this case? The */ |
| 1820 | /* problem is that we can't store both */ |
| 1821 | /* ``a.num / res.den`` and ``b.num / t2`` in the one */ |
| 1822 | /* polynomial ``res.num`` simultaneously. */ |
| 1823 | /* Suggestion: In order to avoid allocating another */ |
| 1824 | /* polynomial, only cancel the common factor in one */ |
| 1825 | /* polynomial. Choose the larger one. */ |
| 1826 | else |
| 1827 | { |
| 1828 | if (fmpz_cmpabs(t2, rop->den) < 0) |
| 1829 | { |
| 1830 | fmpz_poly_scalar_div_fmpz(rop->num, op2->num, rop->den); |
| 1831 | fmpz_poly_mul(rop->num, op1->num, rop->num); |
| 1832 | fmpz_poly_scalar_div_fmpz(rop->num, rop->num, t2); |
| 1833 | } |
| 1834 | else |
| 1835 | { |
| 1836 | fmpz_poly_scalar_div_fmpz(rop->num, op1->num, t2); |
| 1837 | fmpz_poly_mul(rop->num, rop->num, op2->num); |
| 1838 | fmpz_poly_scalar_div_fmpz(rop->num, rop->num, rop->den); |
| 1839 | } |
| 1840 | fmpz_tdiv(t1, op1->den, rop->den); |
| 1841 | fmpz_tdiv(rop->den, op2->den, t2); |
| 1842 | fmpz_mul(t2, t1, rop->den); |
| 1843 | fmpz_clear(rop->den); |
| 1844 | rop->den = t2; |
| 1845 | t2 = NULL; |
| 1846 | } |
| 1847 | } |
| 1848 | if (t2 != NULL) |
| 1849 | fmpz_clear(t2); |
| 1850 | } |
| 1851 | if (t1 != NULL) |
| 1852 | fmpz_clear(t1); |
| 1853 | } |
| 1854 | } |
| 1855 | } |
| 1856 | } |
| 1857 | |
| 1858 | /////////////////////////////////////////////////////////////////////////////// |
| 1859 | // Division |
| 1860 | |
| 1861 | /** |
| 1862 | * \ingroup Division |
| 1863 | * |
| 1864 | * Returns the quotient of the Euclidean division of \c a by \c b. |
| 1865 | * |
| 1866 | * Assumes that \c b is non-zero. Otherwise, an exception is raised in the |
| 1867 | * form of an <tt>abort</tt> statement. |
| 1868 | */ |
| 1869 | void fmpq_poly_floordiv(fmpq_poly_ptr q, const fmpq_poly_ptr a, const fmpq_poly_ptr b) |
| 1870 | { |
| 1871 | unsigned long limbs, m; |
| 1872 | fmpz_t lead, t; |
| 1873 | fmpq_poly_t tpoly; |
| 1874 | |
| 1875 | /* Assertion! */ |
| 1876 | if (fmpq_poly_is_zero(b)) |
| 1877 | { |
| 1878 | printf("ERROR (fmpq_poly_floordiv). Division by zero.\n"); |
| 1879 | abort(); |
| 1880 | } |
| 1881 | |
| 1882 | /* Catch the case when a and b are the same objects in memory. */ |
| 1883 | /* As of FLINT version 1.5.1, there is a bug in this case. */ |
| 1884 | if (a == b) |
| 1885 | { |
| 1886 | fmpq_poly_set_si(q, 1); |
| 1887 | return; |
| 1888 | } |
| 1889 | |
| 1890 | /* Deal with the various other cases of aliasing. */ |
| 1891 | if (q == a | q == b) |
| 1892 | { |
| 1893 | fmpq_poly_init(tpoly); |
| 1894 | fmpq_poly_floordiv(tpoly, a, b); |
| 1895 | fmpq_poly_swap(q, tpoly); |
| 1896 | fmpq_poly_clear(tpoly); |
| 1897 | return; |
| 1898 | } |
| 1899 | |
| 1900 | /* Deal separately with the case deg(b) = 0. */ |
| 1901 | if (fmpq_poly_degree(b) == 0) |
| 1902 | { |
| 1903 | lead = fmpz_poly_get_coeff_ptr(b->num, 0); |
| 1904 | if (_fmpq_poly_den_is_one(a)) |
| 1905 | { |
| 1906 | if (_fmpq_poly_den_is_one(b)) /* a->den == b->den == 1 */ |
| 1907 | { |
| 1908 | fmpz_poly_set(q->num, a->num); |
| 1909 | fmpq_poly_set_den(q, lead); |
| 1910 | fmpq_poly_canonicalize(q, NULL); |
| 1911 | } |
| 1912 | else /* a->den == 1, b->den > 1 */ |
| 1913 | { |
| 1914 | fmpz_poly_scalar_mul_fmpz(q->num, a->num, b->den); |
| 1915 | fmpq_poly_set_den(q, lead); |
| 1916 | fmpq_poly_canonicalize(q, NULL); |
| 1917 | } |
| 1918 | } |
| 1919 | else |
| 1920 | { |
| 1921 | if (_fmpq_poly_den_is_one(b)) /* a->den > 1, b->den == 1 */ |
| 1922 | { |
| 1923 | fmpz_poly_set(q->num, a->num); |
| 1924 | _fmpq_poly_den_fit_limbs(q, fmpz_size(a->den)+fmpz_size(lead)); |
| 1925 | fmpz_mul(q->den, a->den, lead); |
| 1926 | fmpq_poly_canonicalize(q, NULL); |
| 1927 | } |
| 1928 | else /* a->den, b->den > 1 */ |
| 1929 | { |
| 1930 | fmpz_poly_scalar_mul_fmpz(q->num, a->num, b->den); |
| 1931 | _fmpq_poly_den_fit_limbs(q, fmpz_size(a->den)+fmpz_size(lead)); |
| 1932 | fmpz_mul(q->den, a->den, lead); |
| 1933 | fmpq_poly_canonicalize(q, NULL); |
| 1934 | } |
| 1935 | } |
| 1936 | return; |
| 1937 | } |
| 1938 | |
| 1939 | /* General case.. */ |
| 1940 | /* Set q to b->den q->num / (a->den lead^m). */ |
| 1941 | |
| 1942 | fmpz_poly_pseudo_div(q->num, &m, a->num, b->num); |
| 1943 | |
| 1944 | lead = fmpz_poly_lead(b->num); |
| 1945 | |
| 1946 | /* Case 1: lead^m is 1 */ |
| 1947 | if (fmpz_is_one(lead) || m == 0 || (fmpz_is_m1(lead) & m % 2 == 0)) |
| 1948 | { |
| 1949 | if (!_fmpq_poly_den_is_one(b)) |
| 1950 | fmpz_poly_scalar_mul_fmpz(q->num, q->num, b->den); |
| 1951 | fmpq_poly_set_den(q, a->den); |
| 1952 | fmpq_poly_canonicalize(q, NULL); |
| 1953 | } |
| 1954 | /* Case 2: lead^m is -1 */ |
| 1955 | else if (fmpz_is_m1(lead) & m % 2) |
| 1956 | { |
| 1957 | if (!_fmpq_poly_den_is_one(b)) |
| 1958 | fmpz_poly_scalar_mul_fmpz(q->num, q->num, b->den); |
| 1959 | fmpz_poly_neg(q->num, q->num); |
| 1960 | fmpq_poly_set_den(q, a->den); |
| 1961 | fmpq_poly_canonicalize(q, NULL); |
| 1962 | } |
| 1963 | /* Case 3: lead^m is not +-1 */ |
| 1964 | else |
| 1965 | { |
| 1966 | if (!_fmpq_poly_den_is_one(b)) |
| 1967 | fmpz_poly_scalar_mul_fmpz(q->num, q->num, b->den); |
| 1968 | |
| 1969 | limbs = m * fmpz_size(lead); |
| 1970 | |
| 1971 | if (_fmpq_poly_den_is_one(a)) |
| 1972 | { |
| 1973 | _fmpq_poly_den_fit_limbs(q, limbs); |
| 1974 | fmpz_pow_ui(q->den, lead, m); |
| 1975 | } |
| 1976 | else |
| 1977 | { |
| 1978 | t = fmpz_init(limbs); |
| 1979 | _fmpq_poly_den_fit_limbs(q, limbs + fmpz_size(a->den)); |
| 1980 | fmpz_pow_ui(t, lead, m); |
| 1981 | fmpz_mul(q->den, t, a->den); |
| 1982 | fmpz_clear(t); |
| 1983 | } |
| 1984 | fmpq_poly_canonicalize(q, NULL); |
| 1985 | } |
| 1986 | } |
| 1987 | |
| 1988 | /** |
| 1989 | * \ingroup Division |
| 1990 | * |
| 1991 | * Sets \c r to the remainder of the Euclidean division of \c a by \c b. |
| 1992 | * |
| 1993 | * Assumes that \c b is non-zero. Otherwise, an exception is raised in the |
| 1994 | * form of an <tt>abort</tt> statement. |
| 1995 | */ |
| 1996 | void fmpq_poly_mod(fmpq_poly_ptr r, const fmpq_poly_ptr a, const fmpq_poly_ptr b) |
| 1997 | { |
| 1998 | unsigned long limbs, m; |
| 1999 | fmpz_t lead, t; |
| 2000 | fmpq_poly_t tpoly; |
| 2001 | |
| 2002 | /* Assertion! */ |
| 2003 | if (fmpq_poly_is_zero(b)) |
| 2004 | { |
| 2005 | printf("ERROR (fmpq_poly_mod). Division by zero.\n"); |
| 2006 | abort(); |
| 2007 | } |
| 2008 | |
| 2009 | /* Catch the case when a and b are the same objects in memory. */ |
| 2010 | /* As of FLINT version 1.5.1, there is a bug in this case. */ |
| 2011 | if (a == b) |
| 2012 | { |
| 2013 | fmpq_poly_set_si(r, 0); |
| 2014 | return; |
| 2015 | } |
| 2016 | |
| 2017 | /* Deal with the various other cases of aliasing. */ |
| 2018 | if (r == a | r == b) |
| 2019 | { |
| 2020 | fmpq_poly_init(tpoly); |
| 2021 | fmpq_poly_mod(tpoly, a, b); |
| 2022 | fmpq_poly_swap(r, tpoly); |
| 2023 | fmpq_poly_clear(tpoly); |
| 2024 | return; |
| 2025 | } |
| 2026 | |
| 2027 | /* Deal separately with the case deg(b) = 0. */ |
| 2028 | if (fmpq_poly_degree(b) == 0) |
| 2029 | { |
| 2030 | fmpz_poly_zero(r->num); |
| 2031 | if (r->den != NULL) |
| 2032 | fmpz_set_si(r->den, 1); |
| 2033 | return; |
| 2034 | } |
| 2035 | |
| 2036 | /* General case.. */ |
| 2037 | /* Set r to r->num / (a->den lead^m). */ |
| 2038 | |
| 2039 | fmpz_poly_pseudo_rem(r->num, &m, a->num, b->num); |
| 2040 | |
| 2041 | lead = fmpz_poly_lead(b->num); |
| 2042 | |
| 2043 | /* Case 1: lead^m is 1 */ |
| 2044 | if (fmpz_is_one(lead) || m == 0 || (fmpz_is_m1(lead) & m % 2 == 0)) |
| 2045 | { |
| 2046 | fmpq_poly_set_den(r, a->den); |
| 2047 | fmpq_poly_canonicalize(r, NULL); |
| 2048 | } |
| 2049 | /* Case 2: lead^m is -1 */ |
| 2050 | else if (fmpz_is_m1(lead) & m % 2) |
| 2051 | { |
| 2052 | fmpq_poly_set_den(r, a->den); |
| 2053 | fmpz_neg(r->den, r->den); |
| 2054 | fmpq_poly_canonicalize(r, NULL); |
| 2055 | } |
| 2056 | /* Case 3: lead^m is not +-1 */ |
| 2057 | else |
| 2058 | { |
| 2059 | limbs = m * fmpz_size(lead); |
| 2060 | |
| 2061 | if (_fmpq_poly_den_is_one(a)) |
| 2062 | { |
| 2063 | _fmpq_poly_den_fit_limbs(r, limbs); |
| 2064 | fmpz_pow_ui(r->den, lead, m); |
| 2065 | } |
| 2066 | else |
| 2067 | { |
| 2068 | t = fmpz_init(limbs); |
| 2069 | _fmpq_poly_den_fit_limbs(r, limbs + fmpz_size(a->den)); |
| 2070 | fmpz_pow_ui(t, lead, m); |
| 2071 | fmpz_mul(r->den, t, a->den); |
| 2072 | fmpz_clear(t); |
| 2073 | } |
| 2074 | fmpq_poly_canonicalize(r, NULL); |
| 2075 | } |
| 2076 | } |
| 2077 | |
| 2078 | /** |
| 2079 | * \ingroup Division |
| 2080 | * |
| 2081 | * Sets \c q and \c r to the quotient and remainder of the Euclidean |
| 2082 | * division of \c a by \c b. |
| 2083 | * |
| 2084 | * Assumes that \c b is non-zero, and that \c q and \c r refer to distinct |
| 2085 | * objects in memory. |
| 2086 | */ |
| 2087 | void fmpq_poly_divrem(fmpq_poly_ptr q, fmpq_poly_ptr r, const fmpq_poly_ptr a, const fmpq_poly_ptr b) |
| 2088 | { |
| 2089 | unsigned long limbs, m; |
| 2090 | fmpz_t lead, t; |
| 2091 | fmpq_poly_t tempq, tempr; |
| 2092 | |
| 2093 | /* Assertion! */ |
| 2094 | if (fmpq_poly_degree(b)) |
| 2095 | { |
| 2096 | printf("ERROR (fmpq_poly_divrem). Division by zero.\n"); |
| 2097 | abort(); |
| 2098 | } |
| 2099 | if (q == r) |
| 2100 | { |
| 2101 | printf("ERROR (fmpq_poly_divrem). Output arguments aliased.\n"); |
| 2102 | abort(); |
| 2103 | } |
| 2104 | |
| 2105 | /* Catch the case when a and b are the same objects in memory. */ |
| 2106 | /* As of FLINT version 1.5.1, there is a bug in this case. */ |
| 2107 | if (a == b) |
| 2108 | { |
| 2109 | fmpq_poly_set_si(q, 1); |
| 2110 | fmpq_poly_set_si(r, 0); |
| 2111 | return; |
| 2112 | } |
| 2113 | |
| 2114 | /* Deal with the various other cases of aliasing. */ |
| 2115 | if (r == a | r == b) |
| 2116 | { |
| 2117 | if (q == a | q == b) |
| 2118 | { |
| 2119 | fmpq_poly_init(tempq); |
| 2120 | fmpq_poly_init(tempr); |
| 2121 | fmpq_poly_divrem(tempq, tempr, a, b); |
| 2122 | fmpq_poly_swap(q, tempq); |
| 2123 | fmpq_poly_swap(r, tempr); |
| 2124 | fmpq_poly_clear(tempq); |
| 2125 | fmpq_poly_clear(tempr); |
| 2126 | return; |
| 2127 | } |
| 2128 | else |
| 2129 | { |
| 2130 | fmpq_poly_init(tempr); |
| 2131 | fmpq_poly_divrem(q, tempr, a, b); |
| 2132 | fmpq_poly_swap(r, tempr); |
| 2133 | fmpq_poly_clear(tempr); |
| 2134 | return; |
| 2135 | } |
| 2136 | } |
| 2137 | else |
| 2138 | { |
| 2139 | if (q == a | q == b) |
| 2140 | { |
| 2141 | fmpq_poly_init(tempq); |
| 2142 | fmpq_poly_divrem(tempq, r, a, b); |
| 2143 | fmpq_poly_swap(q, tempq); |
| 2144 | fmpq_poly_clear(tempq); |
| 2145 | return; |
| 2146 | } |
| 2147 | } |
| 2148 | |
| 2149 | // TODO: Implement the case `\deg(b) = 0` more efficiently! |
| 2150 | |
| 2151 | /* General case.. */ |
| 2152 | /* Set q to b->den q->num / (a->den lead^m) */ |
| 2153 | /* and r to r->num / (a->den lead^m). */ |
| 2154 | |
| 2155 | fmpz_poly_pseudo_divrem(q->num, r->num, &m, a->num, b->num); |
| 2156 | |
| 2157 | lead = fmpz_poly_lead(b->num); |
| 2158 | |
| 2159 | /* Case 1. lead^m is 1 */ |
| 2160 | if (fmpz_is_one(lead) || m == 0 || (fmpz_is_m1(lead) & m % 2 == 0)) |
| 2161 | { |
| 2162 | if (!_fmpq_poly_den_is_one(b)) |
| 2163 | fmpz_poly_scalar_mul_fmpz(q->num, q->num, b->den); |
| 2164 | fmpq_poly_set_den(q, a->den); |
| 2165 | fmpq_poly_canonicalize(q, NULL); |
| 2166 | |
| 2167 | fmpq_poly_set_den(r, a->den); |
| 2168 | fmpq_poly_canonicalize(r, NULL); |
| 2169 | } |
| 2170 | /* Case 2. lead^m is -1 */ |
| 2171 | else if (fmpz_is_m1(lead) & m % 2) |
| 2172 | { |
| 2173 | if (!_fmpq_poly_den_is_one(b)) |
| 2174 | fmpz_poly_scalar_mul_fmpz(q->num, q->num, b->den); |
| 2175 | fmpz_poly_neg(q->num, q->num); |
| 2176 | fmpq_poly_set_den(q, a->den); |
| 2177 | fmpq_poly_canonicalize(q, NULL); |
| 2178 | |
| 2179 | fmpz_poly_neg(r->num, r->num); |
| 2180 | fmpq_poly_set_den(r, a->den); |
| 2181 | fmpq_poly_canonicalize(r, NULL); |
| 2182 | } |
| 2183 | /* Case 3. lead^m is not +-1 */ |
| 2184 | else |
| 2185 | { |
| 2186 | if (!_fmpq_poly_den_is_one(b)) |
| 2187 | fmpz_poly_scalar_mul_fmpz(q->num, q->num, b->den); |
| 2188 | |
| 2189 | limbs = m * fmpz_size(lead); |
| 2190 | |
| 2191 | if (_fmpq_poly_den_is_one(a)) |
| 2192 | { |
| 2193 | _fmpq_poly_den_fit_limbs(q, limbs); |
| 2194 | fmpz_pow_ui(q->den, lead, m); |
| 2195 | |
| 2196 | fmpq_poly_set_den(r, q->den); |
| 2197 | } |
| 2198 | else |
| 2199 | { |
| 2200 | t = fmpz_init(limbs); |
| 2201 | _fmpq_poly_den_fit_limbs(q, limbs + fmpz_size(a->den)); |
| 2202 | fmpz_pow_ui(t, lead, m); |
| 2203 | fmpz_mul(q->den, t, a->den); |
| 2204 | fmpz_clear(t); |
| 2205 | |
| 2206 | fmpq_poly_set_den(r, q->den); |
| 2207 | } |
| 2208 | fmpq_poly_canonicalize(q, NULL); |
| 2209 | fmpq_poly_canonicalize(r, NULL); |
| 2210 | } |
| 2211 | } |
| 2212 | |
| 2213 | /////////////////////////////////////////////////////////////////////////////// |
| 2214 | // Powering |
| 2215 | |
| 2216 | /** |
| 2217 | * \ingroup Powering |
| 2218 | * |
| 2219 | * Sets \c rop to the <tt>exp</tt>th power of \c op. |
| 2220 | * |
| 2221 | * The corner case of <tt>exp == 0</tt> is handled by setting \c rop to the |
| 2222 | * constant function \f$1\f$. Note that this includes the case \f$0^0 = 1\f$. |
| 2223 | */ |
| 2224 | void fmpq_poly_power(fmpq_poly_ptr rop, const fmpq_poly_ptr op, unsigned long exp) |
| 2225 | { |
| 2226 | fmpz_t t; |
| 2227 | |
| 2228 | if (exp == 0ul) |
| 2229 | { |
| 2230 | fmpq_poly_one(rop); |
| 2231 | } |
| 2232 | else |
| 2233 | { |
| 2234 | fmpz_poly_power(rop->num, op->num, exp); |
| 2235 | if (_fmpq_poly_den_is_one(op)) |
| 2236 | { |
| 2237 | if (rop->den != NULL) |
| 2238 | fmpz_set_si(rop->den, 1); |
| 2239 | } |
| 2240 | else |
| 2241 | { |
| 2242 | if (rop == op) /* op->den != NULL, hence rop->den != NULL */ |
| 2243 | { |
| 2244 | t = fmpz_init(exp * fmpz_size(op->den)); |
| 2245 | fmpz_pow_ui(t, op->den, exp); |
| 2246 | fmpz_clear(rop->den); |
| 2247 | rop->den = t; |
| 2248 | } |
| 2249 | else |
| 2250 | { |
| 2251 | _fmpq_poly_den_fit_limbs(rop, exp * fmpz_size(op->den)); |
| 2252 | fmpz_pow_ui(rop->den, op->den, exp); |
| 2253 | } |
| 2254 | } |
| 2255 | } |
| 2256 | } |
| 2257 | |
| 2258 | /////////////////////////////////////////////////////////////////////////////// |
| 2259 | // Greatest common divisor |
| 2260 | |
| 2261 | /** |
| 2262 | * \ingroup GCD |
| 2263 | * |
| 2264 | * Returns the (monic) greatest common divisor \c res of \c a and \c b. |
| 2265 | * |
| 2266 | * Corner cases: If \c a and \c b are both zero, returns zero. If only |
| 2267 | * one of them is zero, returns the other polynomial, up to normalisation. |
| 2268 | */ |
| 2269 | void fmpq_poly_gcd(fmpq_poly_ptr rop, const fmpq_poly_ptr a, const fmpq_poly_ptr b) |
| 2270 | { |
| 2271 | fmpz_t lead, t; |
| 2272 | fmpz_poly_t num; |
| 2273 | fmpq_poly_t tpoly; |
| 2274 | |
| 2275 | /* Deal with aliasing */ |
| 2276 | if (rop == a | rop == b) |
| 2277 | { |
| 2278 | fmpq_poly_init(tpoly); |
| 2279 | fmpq_poly_gcd(tpoly, a, b); |
| 2280 | fmpq_poly_swap(rop, tpoly); |
| 2281 | fmpq_poly_clear(tpoly); |
| 2282 | return; |
| 2283 | } |
| 2284 | |
| 2285 | /* Deal with corner cases */ |
| 2286 | if (fmpq_poly_is_zero(a)) |
| 2287 | { |
| 2288 | if (fmpq_poly_is_zero(b)) /* a == b == 0 */ |
| 2289 | fmpq_poly_zero(rop); |
| 2290 | else /* a == 0, b != 0 */ |
| 2291 | fmpq_poly_monic(rop, b); |
| 2292 | return; |
| 2293 | } |
| 2294 | else |
| 2295 | { |
| 2296 | if (fmpq_poly_is_zero(b)) /* a != 0, b == 0 */ |
| 2297 | { |
| 2298 | fmpq_poly_monic(rop, a); |
| 2299 | return; |
| 2300 | } |
| 2301 | } |
| 2302 | |
| 2303 | /* General case.. */ |
| 2304 | fmpz_poly_init(num); |
| 2305 | fmpz_poly_primitive_part(rop->num, a->num); |
| 2306 | fmpz_poly_primitive_part(num, b->num); |
| 2307 | |
| 2308 | /* Since rop.num is the greatest common divisor of the primitive parts */ |
| 2309 | /* of a.num and b.num, it is also primitive. But as of FLINT 1.4.0, the */ |
| 2310 | /* leading term *might* be negative. */ |
| 2311 | fmpz_poly_gcd(rop->num, rop->num, num); |
| 2312 | |
| 2313 | lead = fmpz_poly_lead(rop->num); |
| 2314 | if (fmpz_sgn(lead) < 0) |
| 2315 | fmpz_poly_neg(rop->num, rop->num); |
| 2316 | fmpq_poly_set_den(rop, lead); |
| 2317 | |
| 2318 | fmpz_poly_clear(num); |
| 2319 | } |
| 2320 | |
| 2321 | /** |
| 2322 | * \ingroup GCD |
| 2323 | * |
| 2324 | * Returns polynomials \c s, \c t and \c rop such that \c rop is |
| 2325 | * (monic) greatest common divisor of \c a and \c b, and such that |
| 2326 | * <tt>rop = s a + t b</tt>. |
| 2327 | * |
| 2328 | * Corner cases: If \c a and \c b are zero, returns zero polynomials. |
| 2329 | * Otherwise, if only \c a is zero, returns <tt>(res, s, t) = (b, 0, 1)</tt> |
| 2330 | * up to normalisation, and similarly if only \c b is zero. |
| 2331 | * |
| 2332 | * Assumes that the output parameters \c rop, \c s, and \c t refer to |
| 2333 | * distinct objects in memory. Otherwise, an exception is raised in the |
| 2334 | * form of an <tt>abort</tt> statement. |
| 2335 | */ |
| 2336 | void fmpq_poly_xgcd(fmpq_poly_ptr rop, fmpq_poly_ptr s, fmpq_poly_ptr t, const fmpq_poly_ptr a, const fmpq_poly_ptr b) |
| 2337 | { |
| 2338 | fmpz_t lead, temp; |
| 2339 | unsigned long bound, limbs; |
| 2340 | fmpq_poly_t tempg, temps, tempt; |
| 2341 | |
| 2342 | /* Assertion! */ |
| 2343 | if (rop == s | rop == t | s == t) |
| 2344 | { |
| 2345 | printf("ERROR (fmpq_poly_xgcd). Output arguments aliased.\n"); |
| 2346 | abort(); |
| 2347 | } |
| 2348 | |
| 2349 | /* Deal with aliasing */ |
| 2350 | if (rop == a | rop == b) |
| 2351 | { |
| 2352 | if (s == a | s == b) |
| 2353 | { |
| 2354 | /* We know that t does not coincide with a or b, since otherwise */ |
| 2355 | /* two of rop, s, and t coincide, too. */ |
| 2356 | fmpq_poly_init(tempg); |
| 2357 | fmpq_poly_init(temps); |
| 2358 | fmpq_poly_xgcd(tempg, temps, t, a, b); |
| 2359 | fmpq_poly_swap(rop, tempg); |
| 2360 | fmpq_poly_swap(s, temps); |
| 2361 | fmpq_poly_clear(tempg); |
| 2362 | fmpq_poly_clear(temps); |
| 2363 | return; |
| 2364 | } |
| 2365 | else |
| 2366 | { |
| 2367 | if (t == a | t == b) |
| 2368 | { |
| 2369 | fmpq_poly_init(tempg); |
| 2370 | fmpq_poly_init(tempt); |
| 2371 | fmpq_poly_xgcd(tempg, s, tempt, a, b); |
| 2372 | fmpq_poly_swap(rop, tempg); |
| 2373 | fmpq_poly_swap(t, tempt); |
| 2374 | fmpq_poly_clear(tempg); |
| 2375 | fmpq_poly_clear(tempt); |
| 2376 | return; |
| 2377 | } |
| 2378 | else |
| 2379 | { |
| 2380 | fmpq_poly_init(tempg); |
| 2381 | fmpq_poly_xgcd(tempg, s, t, a, b); |
| 2382 | fmpq_poly_swap(rop, tempg); |
| 2383 | fmpq_poly_clear(tempg); |
| 2384 | return; |
| 2385 | } |
| 2386 | } |
| 2387 | } |
| 2388 | else |
| 2389 | { |
| 2390 | if (s == a | s == b) |
| 2391 | { |
| 2392 | if (t == a | t == b) |
| 2393 | { |
| 2394 | fmpq_poly_init(temps); |
| 2395 | fmpq_poly_init(tempt); |
| 2396 | fmpq_poly_xgcd(rop, temps, tempt, a, b); |
| 2397 | fmpq_poly_swap(s, temps); |
| 2398 | fmpq_poly_swap(t, tempt); |
| 2399 | fmpq_poly_clear(temps); |
| 2400 | fmpq_poly_clear(tempt); |
| 2401 | return; |
| 2402 | } |
| 2403 | else |
| 2404 | { |
| 2405 | fmpq_poly_init(temps); |
| 2406 | fmpq_poly_xgcd(rop, temps, t, a, b); |
| 2407 | fmpq_poly_swap(s, temps); |
| 2408 | fmpq_poly_clear(temps); |
| 2409 | return; |
| 2410 | } |
| 2411 | } |
| 2412 | else |
| 2413 | { |
| 2414 | if (t == a | t == b) |
| 2415 | { |
| 2416 | fmpq_poly_init(tempt); |
| 2417 | fmpq_poly_xgcd(rop, s, tempt, a, b); |
| 2418 | fmpq_poly_swap(t, tempt); |
| 2419 | fmpq_poly_clear(tempt); |
| 2420 | return; |
| 2421 | } |
| 2422 | } |
| 2423 | } |
| 2424 | |
| 2425 | /* From here on, we may assume that none of the output variables are */ |
| 2426 | /* aliases for the input variables. */ |
| 2427 | |
| 2428 | /* Deal with the following three corner cases: */ |
| 2429 | /* a == 0, b == 0 */ |
| 2430 | /* a == 0, b =! 0 */ |
| 2431 | /* a != 0, b == 0 */ |
| 2432 | if (fmpq_poly_is_zero(a)) |
| 2433 | { |
| 2434 | if (fmpq_poly_is_zero(b)) /* Case 1. a == b == 0 */ |
| 2435 | { |
| 2436 | fmpq_poly_zero(rop); |
| 2437 | fmpq_poly_zero(s); |
| 2438 | fmpq_poly_zero(t); |
| 2439 | return; |
| 2440 | } |
| 2441 | else /* Case 2. a == 0, b != 0 */ |
| 2442 | { |
| 2443 | fmpq_poly_monic(rop, b); |
| 2444 | fmpq_poly_zero(s); |
| 2445 | |
| 2446 | lead = fmpz_poly_lead(b->num); |
| 2447 | fmpz_poly_zero(t->num); |
| 2448 | if (_fmpq_poly_den_is_one(b)) |
| 2449 | { |
| 2450 | fmpz_poly_set_coeff_si(t->num, 0, 1); |
| 2451 | fmpq_poly_set_den(t, lead); |
| 2452 | } |
| 2453 | else |
| 2454 | { |
| 2455 | temp = fmpz_init(FLINT_MAX(fmpz_size(b->den), fmpz_size(lead))); |
| 2456 | fmpz_gcd(temp, b->den, lead); |
| 2457 | fmpz_poly_set_coeff_fmpz(t->num, 0, b->den); |
| 2458 | fmpz_poly_scalar_div_fmpz(t->num, t->num, temp); |
| 2459 | _fmpq_poly_den_fit_limbs(t, fmpz_size(lead)); |
| 2460 | fmpz_tdiv(t->den, lead, temp); |
| 2461 | fmpz_clear(temp); |
| 2462 | } |
| 2463 | if (t->den != NULL && fmpz_sgn(t->den) < 0) |
| 2464 | { |
| 2465 | fmpz_poly_neg(t->num, t->num); |
| 2466 | fmpz_neg(t->den, t->den); |
| 2467 | } |
| 2468 | return; |
| 2469 | } |
| 2470 | } |
| 2471 | else |
| 2472 | { |
| 2473 | if (fmpq_poly_is_zero(b)) /* Case 3. a != 0, b == 0 */ |
| 2474 | { |
| 2475 | fmpq_poly_xgcd(rop, t, s, b, a); |
| 2476 | return; |
| 2477 | } |
| 2478 | } |
| 2479 | |
| 2480 | /* We are now in the general case where a and b are non-zero. */ |
| 2481 | |
| 2482 | _fmpq_poly_den_fit_limbs(s, a->num->limbs); |
| 2483 | _fmpq_poly_den_fit_limbs(t, b->num->limbs); |
| 2484 | fmpz_poly_content(s->den, a->num); |
| 2485 | fmpz_poly_content(t->den, b->num); |
| 2486 | fmpz_poly_scalar_div_fmpz(s->num, a->num, s->den); |
| 2487 | fmpz_poly_scalar_div_fmpz(t->num, b->num, t->den); |
| 2488 | |
| 2489 | /* Note that, since s->num and t->num are primitive, rop->num is */ |
| 2490 | /* primitive, too. In fact, it is the rational greatest common divisor */ |
| 2491 | /* of a and b. As of FLINT 1.4.0, the leading coefficient of res.num */ |
| 2492 | /* *might* be negative. */ |
| 2493 | |
| 2494 | fmpz_poly_gcd(rop->num, s->num, t->num); |
| 2495 | if (fmpz_sgn(fmpz_poly_lead(rop->num)) < 0) |
| 2496 | fmpz_poly_neg(rop->num, rop->num); |
| 2497 | lead = fmpz_poly_lead(rop->num); |
| 2498 | |
| 2499 | /* Now rop->num is a (primitive) rational greatest common divisor of */ |
| 2500 | /* a and b. */ |
| 2501 | |
| 2502 | if (fmpz_poly_degree(rop->num) > 0) |
| 2503 | { |
| 2504 | fmpz_poly_div(s->num, s->num, rop->num); |
| 2505 | fmpz_poly_div(t->num, t->num, rop->num); |
| 2506 | } |
| 2507 | |
| 2508 | bound = fmpz_poly_resultant_bound(s->num, t->num); |
| 2509 | if (fmpz_is_one(lead)) |
| 2510 | _fmpq_poly_den_fit_limbs(rop, bound/FLINT_BITS + 2); |
| 2511 | else |
| 2512 | _fmpq_poly_den_fit_limbs(rop, FLINT_MAX(bound/FLINT_BITS + 2, |
| 2513 | fmpz_size(lead))); |
| 2514 | fmpz_poly_xgcd(rop->den, s->num, t->num, s->num, t->num); |
| 2515 | |
| 2516 | /* Now the following equation holds: */ |
| 2517 | /* rop->den rop->num == */ |
| 2518 | /* (s->num a->den / s->den) a + (t->num b->den / t->den) b. */ |
| 2519 | |
| 2520 | limbs = FLINT_MAX(s->num->limbs, t->num->limbs); |
| 2521 | limbs = FLINT_MAX(limbs, fmpz_size(s->den)); |
| 2522 | limbs = FLINT_MAX(limbs, fmpz_size(t->den) + fmpz_size(rop->den) + fmpz_size(lead)); |
| 2523 | temp = fmpz_init(limbs); |
| 2524 | |
| 2525 | _fmpq_poly_den_fit_limbs(s, fmpz_size(s->den) + fmpz_size(rop->den) |
| 2526 | + fmpz_size(lead)); |
| 2527 | if (!_fmpq_poly_den_is_one(a)) |
| 2528 | fmpz_poly_scalar_mul_fmpz(s->num, s->num, a->den); |
| 2529 | fmpz_mul(temp, s->den, rop->den); |
| 2530 | fmpz_mul(s->den, temp, lead); |
| 2531 | |
| 2532 | _fmpq_poly_den_fit_limbs(t, fmpz_size(t->den) + fmpz_size(rop->den) |
| 2533 | + fmpz_size(lead)); |
| 2534 | if (!_fmpq_poly_den_is_one(b)) |
| 2535 | fmpz_poly_scalar_mul_fmpz(t->num, t->num, b->den); |
| 2536 | fmpz_mul(temp, t->den, rop->den); |
| 2537 | fmpz_mul(t->den, temp, lead); |
| 2538 | |
| 2539 | fmpq_poly_canonicalize(s, temp); |
| 2540 | fmpq_poly_canonicalize(t, temp); |
| 2541 | |
| 2542 | fmpz_set(rop->den, lead); |
| 2543 | |
| 2544 | fmpz_clear(temp); |
| 2545 | } |
| 2546 | |
| 2547 | /** |
| 2548 | * \ingroup GCD |
| 2549 | * |
| 2550 | * Computes the monic (or zero) least common multiple of \c a and \c b. |
| 2551 | * |
| 2552 | * If either of \c a and \c b is zero, returns zero. This behaviour ensures |
| 2553 | * that the relation |
| 2554 | * \f[ |
| 2555 | * \text{lcm}(a,b) \gcd(a,b) \sim a b |
| 2556 | * \f] |
| 2557 | * holds, where \f$\sim\f$ denotes equality up to units. |
| 2558 | */ |
| 2559 | void fmpq_poly_lcm(fmpq_poly_ptr rop, const fmpq_poly_ptr a, const fmpq_poly_ptr b) |
| 2560 | { |
| 2561 | fmpz_poly_t prod; |
| 2562 | fmpz_t lead; |
| 2563 | fmpq_poly_t tpoly; |
| 2564 | |
| 2565 | /* Handle aliasing */ |
| 2566 | if (rop == a | rop == b) |
| 2567 | { |
| 2568 | fmpq_poly_init(tpoly); |
| 2569 | fmpq_poly_lcm(tpoly, a, b); |
| 2570 | fmpq_poly_swap(rop, tpoly); |
| 2571 | fmpq_poly_clear(tpoly); |
| 2572 | return; |
| 2573 | } |
| 2574 | |
| 2575 | if (fmpq_poly_is_zero(a)) |
| 2576 | fmpq_poly_zero(rop); |
| 2577 | else if (fmpq_poly_is_zero(b)) |
| 2578 | fmpq_poly_zero(rop); |
| 2579 | else |
| 2580 | { |
| 2581 | fmpz_poly_init(prod); |
| 2582 | fmpq_poly_gcd(rop, a, b); |
| 2583 | fmpz_poly_mul(prod, a->num, b->num); |
| 2584 | fmpz_poly_primitive_part(prod, prod); |
| 2585 | fmpz_poly_div(rop->num, prod, rop->num); |
| 2586 | |
| 2587 | /* Note that GCD returns a monic rop and so a primitive rop.num. */ |
| 2588 | /* Dividing the primitive prod by this yields a primitive quotient */ |
| 2589 | /* rop->num. */ |
| 2590 | |
| 2591 | lead = fmpz_poly_lead(rop->num); |
| 2592 | if (fmpz_is_one(lead)) |
| 2593 | { |
| 2594 | if (rop->den != NULL) |
| 2595 | fmpz_set_si(rop->den, 1); |
| 2596 | } |
| 2597 | else if (fmpz_is_m1(lead)) |
| 2598 | { |
| 2599 | fmpz_poly_neg(rop->num, rop->num); |
| 2600 | if (rop->den != NULL) |
| 2601 | fmpz_set_si(rop->den, 1); |
| 2602 | } |
| 2603 | else if (fmpz_sgn(lead) < 0) |
| 2604 | { |
| 2605 | fmpq_poly_set_den(rop, lead); |
| 2606 | fmpz_poly_neg(rop->num, rop->num); |
| 2607 | fmpz_neg(rop->den, rop->den); |
| 2608 | } |
| 2609 | else |
| 2610 | fmpq_poly_set_den(rop, lead); |
| 2611 | fmpz_poly_clear(prod); |
| 2612 | } |
| 2613 | } |
| 2614 | |
| 2615 | /////////////////////////////////////////////////////////////////////////////// |
| 2616 | // Derivative |
| 2617 | |
| 2618 | /** |
| 2619 | * \ingroup Derivative |
| 2620 | * |
| 2621 | * Sets \c rop to the derivative of \c op. |
| 2622 | * |
| 2623 | * \todo The second argument should be declared \c const, but as of |
| 2624 | * FLINT 1.5.0 this generates a compile-time warning. |
| 2625 | */ |
| 2626 | void fmpq_poly_derivative(fmpq_poly_ptr rop, fmpq_poly_ptr op) |
| 2627 | { |
| 2628 | if (fmpq_poly_degree(op) < 1) |
| 2629 | fmpq_poly_zero(rop); |
| 2630 | else |
| 2631 | { |
| 2632 | fmpz_poly_derivative(rop->num, op->num); |
| 2633 | fmpq_poly_set_den(rop, op->den); |
| 2634 | fmpq_poly_canonicalize(rop, NULL); |
| 2635 | } |
| 2636 | } |
| 2637 | |
| 2638 | /////////////////////////////////////////////////////////////////////////////// |
| 2639 | // Evaluation |
| 2640 | |
| 2641 | /** |
| 2642 | * \ingroup Evaluation |
| 2643 | * |
| 2644 | * Evaluates the integer polynomial \c f at the rational \c a using Horner's |
| 2645 | * method. |
| 2646 | */ |
| 2647 | void _fmpz_poly_evaluate_mpq_horner(mpq_t rop, const fmpz_poly_t f, const mpq_t a) |
| 2648 | { |
| 2649 | mpq_t temp; |
| 2650 | mpq_t tempr; /* Temporary variable to handle aliasing */ |
| 2651 | unsigned long n; /* Indexing variable */ |
| 2652 | |
| 2653 | /* Handle aliasing */ |
| 2654 | if (rop == a) |
| 2655 | { |
| 2656 | mpq_init(tempr); |
| 2657 | _fmpz_poly_evaluate_mpq_horner(tempr, f, a); |
| 2658 | mpq_swap(rop, tempr); |
| 2659 | mpq_clear(tempr); |
| 2660 | return; |
| 2661 | } |
| 2662 | |
| 2663 | n = fmpz_poly_length(f); |
| 2664 | |
| 2665 | if (n == 0) |
| 2666 | { |
| 2667 | mpq_set_si(rop, 0, 1); |
| 2668 | } |
| 2669 | else if (n == 1) |
| 2670 | { |
| 2671 | fmpz_poly_get_coeff_mpz(mpq_numref(rop), f, 0); |
| 2672 | mpz_set_si(mpq_denref(rop), 1); |
| 2673 | } |
| 2674 | else |
| 2675 | { |
| 2676 | n--; |
| 2677 | fmpz_poly_get_coeff_mpz(mpq_numref(rop), f, n); |
| 2678 | mpz_set_si(mpq_denref(rop), 1); |
| 2679 | mpq_init(temp); |
| 2680 | do { |
| 2681 | n--; |
| 2682 | mpq_mul(temp, rop, a); |
| 2683 | fmpz_poly_get_coeff_mpz(mpq_numref(rop), f, n); |
| 2684 | mpz_set_si(mpq_denref(rop), 1); |
| 2685 | mpq_add(rop, rop, temp); |
| 2686 | } while (n); |
| 2687 | mpq_clear(temp); |
| 2688 | } |
| 2689 | } |
| 2690 | |
| 2691 | /** |
| 2692 | * \ingroup Evaluation |
| 2693 | * |
| 2694 | * Evaluates the rational polynomial \c f at the integer \c a. |
| 2695 | * |
| 2696 | * Assumes that the numerator and denominator of the <tt>mpq_t</tt> |
| 2697 | * \c rop are distinct (as objects in memory) from the <tt>mpz_t</tt> |
| 2698 | * \c a. |
| 2699 | */ |
| 2700 | void fmpq_poly_evaluate_mpz(mpq_t rop, fmpq_poly_ptr f, const mpz_t a) |
| 2701 | { |
| 2702 | fmpz_t num, t; |
| 2703 | unsigned long limbs, max; |
| 2704 | |
| 2705 | if (fmpq_poly_is_zero(f)) |
| 2706 | { |
| 2707 | mpq_set_si(rop, 0, 1); |
| 2708 | return; |
| 2709 | } |
| 2710 | |
| 2711 | /* Establish a bound on the size of f->num evaluated at a */ |
| 2712 | max = (f->num->length) * (f->num->limbs + f->num->length * mpz_size(a)); |
| 2713 | |
| 2714 | /* Compute the result */ |
| 2715 | num = fmpz_init(max); |
| 2716 | t = fmpz_init(mpz_size(a)); |
| 2717 | mpz_to_fmpz(t, a); |
| 2718 | fmpz_poly_evaluate(num, f->num, t); |
| 2719 | fmpz_to_mpz(mpq_numref(rop), num); |
| 2720 | if (f->den == NULL) |
| 2721 | { |
| 2722 | mpz_set_si(mpq_denref(rop), 1); |
| 2723 | } |
| 2724 | else |
| 2725 | { |
| 2726 | fmpz_to_mpz(mpq_denref(rop), f->den); |
| 2727 | mpq_canonicalize(rop); |
| 2728 | } |
| 2729 | |
| 2730 | /* Clean-up */ |
| 2731 | fmpz_clear(num); |
| 2732 | fmpz_clear(t); |
| 2733 | } |
| 2734 | |
| 2735 | /** |
| 2736 | * \ingroup Evaluation |
| 2737 | * |
| 2738 | * Evaluates the rational polynomial \c f at the rational \c a. |
| 2739 | */ |
| 2740 | void fmpq_poly_evaluate_mpq(mpq_t rop, fmpq_poly_ptr f, const mpq_t a) |
| 2741 | { |
| 2742 | mpq_t tempr; |
| 2743 | mpz_t den; |
| 2744 | |
| 2745 | if (rop == a) |
| 2746 | { |
| 2747 | mpq_init(tempr); |
| 2748 | fmpq_poly_evaluate_mpq(tempr, f, a); |
| 2749 | mpq_swap(rop, tempr); |
| 2750 | mpq_clear(tempr); |
| 2751 | return; |
| 2752 | } |
| 2753 | |
| 2754 | _fmpz_poly_evaluate_mpq_horner(rop, f->num, a); |
| 2755 | if (!_fmpq_poly_den_is_one(f)) |
| 2756 | { |
| 2757 | mpz_init(den); |
| 2758 | fmpz_to_mpz(den, f->den); |
| 2759 | mpz_mul(mpq_denref(rop), mpq_denref(rop), den); |
| 2760 | mpq_canonicalize(rop); |
| 2761 | mpz_clear(den); |
| 2762 | } |
| 2763 | } |
| 2764 | |
| 2765 | /////////////////////////////////////////////////////////////////////////////// |
| 2766 | // Gaussian content |
| 2767 | |
| 2768 | /** |
| 2769 | * \ingroup Content |
| 2770 | * |
| 2771 | * Returns the non-negative content of \c op. |
| 2772 | * |
| 2773 | * The content of \f$0\f$ is defined to be \f$0\f$. |
| 2774 | */ |
| 2775 | void fmpq_poly_content(mpq_t rop, const fmpq_poly_ptr op) |
| 2776 | { |
| 2777 | fmpz_t numc; |
| 2778 | |
| 2779 | numc = fmpz_init(op->num->limbs); |
| 2780 | fmpz_poly_content(numc, op->num); |
| 2781 | fmpz_abs(numc, numc); |
| 2782 | fmpz_to_mpz(mpq_numref(rop), numc); |
| 2783 | if (op->den == NULL) |
| 2784 | mpz_set_si(mpq_denref(rop), 1); |
| 2785 | else |
| 2786 | fmpz_to_mpz(mpq_denref(rop), op->den); |
| 2787 | fmpz_clear(numc); |
| 2788 | } |
| 2789 | |
| 2790 | /** |
| 2791 | * \ingroup Content |
| 2792 | * |
| 2793 | * Returns the primitive part (with non-negative leading coefficient) of |
| 2794 | * \c op as an element of type #fmpq_poly_t. |
| 2795 | */ |
| 2796 | void fmpq_poly_primitive_part(fmpq_poly_ptr rop, const fmpq_poly_ptr op) |
| 2797 | { |
| 2798 | if (fmpq_poly_is_zero(op)) |
| 2799 | fmpq_poly_zero(rop); |
| 2800 | else |
| 2801 | { |
| 2802 | fmpz_poly_primitive_part(rop->num, op->num); |
| 2803 | if (fmpz_sgn(fmpz_poly_lead(rop->num)) < 0) |
| 2804 | fmpz_poly_neg(rop->num, rop->num); |
| 2805 | if (rop->den != NULL) |
| 2806 | fmpz_set_si(rop->den, 1); |
| 2807 | } |
| 2808 | } |
| 2809 | |
| 2810 | /** |
| 2811 | * \brief Returns whether \c op is monic. |
| 2812 | * \ingroup Content |
| 2813 | * |
| 2814 | * Returns whether \c op is monic. |
| 2815 | * |
| 2816 | * By definition, the zero polynomial is \e not monic. |
| 2817 | */ |
| 2818 | int fmpq_poly_is_monic(const fmpq_poly_ptr op) |
| 2819 | { |
| 2820 | fmpz_t lead; |
| 2821 | |
| 2822 | if (fmpq_poly_is_zero(op)) |
| 2823 | return 0; |
| 2824 | else |
| 2825 | { |
| 2826 | lead = fmpz_poly_lead(op->num); |
| 2827 | if (_fmpq_poly_den_is_one(op)) |
| 2828 | return fmpz_is_one(lead); |
| 2829 | else |
| 2830 | return (fmpz_sgn(lead) > 0) && (fmpz_cmpabs(lead, op->den) == 0); |
| 2831 | } |
| 2832 | } |
| 2833 | |
| 2834 | /** |
| 2835 | * Sets \c rop to the unique monic scalar multiple of \c op. |
| 2836 | * |
| 2837 | * As the only special case, if \c op is the zero polynomial, \c rop is set |
| 2838 | * to zero, too. |
| 2839 | */ |
| 2840 | void fmpq_poly_monic(fmpq_poly_ptr rop, const fmpq_poly_ptr op) |
| 2841 | { |
| 2842 | fmpz_t lead; |
| 2843 | |
| 2844 | if (fmpq_poly_is_zero(op)) |
| 2845 | { |
| 2846 | fmpq_poly_zero(rop); |
| 2847 | return; |
| 2848 | } |
| 2849 | |
| 2850 | fmpz_poly_primitive_part(rop->num, op->num); |
| 2851 | lead = fmpz_poly_lead(rop->num); |
| 2852 | if (fmpz_sgn(lead) < 0) |
| 2853 | fmpz_poly_neg(rop->num, rop->num); |
| 2854 | fmpq_poly_set_den(rop, lead); |
| 2855 | } |
| 2856 | |
| 2857 | /////////////////////////////////////////////////////////////////////////////// |
| 2858 | // Resultant |
| 2859 | |
| 2860 | /** |
| 2861 | * \brief Returns the resultant of \c a and \c b. |
| 2862 | * \ingroup Resultant |
| 2863 | * |
| 2864 | * Returns the resultant of \c a and \c b. |
| 2865 | * |
| 2866 | * Enumerating the roots of \c a and \c b over \f$\bar{\mathbf{Q}}\f$ as |
| 2867 | * \f$r_1, \dotsc, r_m\f$ and \f$s_1, \dotsc, s_n\f$, respectively, and |
| 2868 | * letting \f$x\f$ and \f$y\f$ denote the leading coefficients, the resultant |
| 2869 | * is defined as |
| 2870 | * \f[ |
| 2871 | * x^{\deg(b)} y^{\deg(a)} \prod_{1 \leq i, j \leq n} (r_i - s_j). |
| 2872 | * \f] |
| 2873 | * |
| 2874 | * We handle special cases as follows: if one of the polynomials is zero, |
| 2875 | * the resultant is zero. Note that otherwise if one of the polynomials is |
| 2876 | * constant, the last term in the above expression is the empty product. |
| 2877 | */ |
| 2878 | void fmpq_poly_resultant(mpq_t rop, const fmpq_poly_ptr a, const fmpq_poly_ptr b) |
| 2879 | { |
| 2880 | fmpz_t rest, t1, t2; |
| 2881 | fmpz_poly_t anum, bnum; |
| 2882 | fmpz_t acont, bcont; |
| 2883 | long d1, d2; |
| 2884 | unsigned long bound, denbound, numbound; |
| 2885 | fmpz_poly_t g; |
| 2886 | |
| 2887 | d1 = fmpz_poly_degree(a->num); |
| 2888 | d2 = fmpz_poly_degree(b->num); |
| 2889 | |
| 2890 | /* We first handle special cases. */ |
| 2891 | if (d1 < 0 | d2 < 0) |
| 2892 | { |
| 2893 | mpq_set_si(rop, 0, 1); |
| 2894 | return; |
| 2895 | } |
| 2896 | if (d1 == 0) |
| 2897 | { |
| 2898 | if (d2 == 0) |
| 2899 | mpq_set_si(rop, 1, 1); |
| 2900 | else if (d2 == 1) |
| 2901 | { |
| 2902 | fmpz_to_mpz(mpq_numref(rop), fmpz_poly_lead(a->num)); |
| 2903 | if (a->den == NULL) |
| 2904 | mpz_set_si(mpq_denref(rop), 1); |
| 2905 | else |
| 2906 | fmpz_to_mpz(mpq_denref(rop), a->den); |
| 2907 | } |
| 2908 | else |
| 2909 | { |
| 2910 | if (a->den == NULL) |
| 2911 | bound = a->num->limbs; |
| 2912 | else |
| 2913 | bound = FLINT_MAX(a->num->limbs, fmpz_size(a->den)); |
| 2914 | t1 = fmpz_init(d2 * bound); |
| 2915 | fmpz_pow_ui(t1, fmpz_poly_lead(a->num), d2); |
| 2916 | fmpz_to_mpz(mpq_numref(rop), t1); |
| 2917 | if (a->den == NULL) |
| 2918 | mpz_set_si(mpq_denref(rop), 1); |
| 2919 | else |
| 2920 | { |
| 2921 | fmpz_pow_ui(t1, a->den, d2); |
| 2922 | fmpz_to_mpz(mpq_denref(rop), t1); |
| 2923 | } |
| 2924 | fmpz_clear(t1); |
| 2925 | } |
| 2926 | return; |
| 2927 | } |
| 2928 | if (d2 == 0) |
| 2929 | { |
| 2930 | fmpq_poly_resultant(rop, b, a); |
| 2931 | return; |
| 2932 | } |
| 2933 | |
| 2934 | /* We are now in the general case, with both polynomials of degree at */ |
| 2935 | /* least 1. */ |
| 2936 | |
| 2937 | /* We set a->num =: acont anum with acont > 0 and anum primitive. */ |
| 2938 | acont = fmpz_init(a->num->limbs); |
| 2939 | fmpz_poly_content(acont, a->num); |
| 2940 | fmpz_abs(acont, acont); |
| 2941 | fmpz_poly_init(anum); |
| 2942 | fmpz_poly_scalar_div_fmpz(anum, a->num, acont); |
| 2943 | |
| 2944 | /* We set b->num =: bcont bnum with bcont > 0 and bnum primitive. */ |
| 2945 | bcont = fmpz_init(b->num->limbs); |
| 2946 | fmpz_poly_content(bcont, b->num); |
| 2947 | fmpz_abs(bcont, bcont); |
| 2948 | fmpz_poly_init(bnum); |
| 2949 | fmpz_poly_scalar_div_fmpz(bnum, b->num, bcont); |
| 2950 | |
| 2951 | fmpz_poly_init(g); |
| 2952 | fmpz_poly_gcd(g, anum, bnum); |
| 2953 | |
| 2954 | /* If the gcd has positive degree, the resultant is zero. */ |
| 2955 | if (fmpz_poly_degree(g) > 0) |
| 2956 | { |
| 2957 | mpq_set_si(rop, 0, 1); |
| 2958 | |
| 2959 | /* Clean up */ |
| 2960 | fmpz_clear(acont); |
| 2961 | fmpz_clear(bcont); |
| 2962 | fmpz_poly_clear(anum); |
| 2963 | fmpz_poly_clear(bnum); |
| 2964 | fmpz_poly_clear(g); |
| 2965 | return; |
| 2966 | } |
| 2967 | |
| 2968 | /* Set some bounds */ |
| 2969 | if (a->den == NULL) |
| 2970 | { |
| 2971 | if (b->den == NULL) |
| 2972 | { |
| 2973 | numbound = FLINT_MAX(d2 * fmpz_size(acont), d1 * fmpz_size(bcont)); |
| 2974 | denbound = 1; |
| 2975 | } |
| 2976 | else |
| 2977 | { |
| 2978 | numbound = FLINT_MAX(d2 * fmpz_size(acont), d1 * fmpz_size(bcont)); |
| 2979 | denbound = d1 * fmpz_size(b->den); |
| 2980 | } |
| 2981 | } |
| 2982 | else |
| 2983 | { |
| 2984 | if (b->den == NULL) |
| 2985 | { |
| 2986 | numbound = FLINT_MAX(d2 * fmpz_size(acont), d1 * fmpz_size(bcont)); |
| 2987 | denbound = d2 * fmpz_size(a->den); |
| 2988 | } |
| 2989 | else |
| 2990 | { |
| 2991 | numbound = FLINT_MAX(d2 * fmpz_size(acont), d1 * fmpz_size(bcont)); |
| 2992 | denbound = FLINT_MAX(d2 * fmpz_size(a->den), d1 * fmpz_size(b->den)); |
| 2993 | } |
| 2994 | } |
| 2995 | |
| 2996 | /* Now anum and bnum are coprime and we compute their resultant using */ |
| 2997 | /* the method from the fmpz_poly module. */ |
| 2998 | bound = fmpz_poly_resultant_bound(anum, bnum); |
| 2999 | bound = bound/FLINT_BITS + 2 + d2 * fmpz_size(acont) |
| 3000 | + d1 * fmpz_size(bcont); |
| 3001 | rest = fmpz_init(FLINT_MAX(bound, denbound)); |
| 3002 | fmpz_poly_resultant(rest, anum, bnum); |
| 3003 | |
| 3004 | /* Finally, w take into account the factors acont/a.den and bcont/b.den. */ |
| 3005 | t1 = fmpz_init(FLINT_MAX(bound, denbound)); |
| 3006 | t2 = fmpz_init(FLINT_MAX(numbound, denbound)); |
| 3007 | |
| 3008 | if (!fmpz_is_one(acont)) |
| 3009 | { |
| 3010 | fmpz_pow_ui(t2, acont, d2); |
| 3011 | fmpz_set(t1, rest); |
| 3012 | fmpz_mul(rest, t1, t2); |
| 3013 | } |
| 3014 | if (!fmpz_is_one(bcont)) |
| 3015 | { |
| 3016 | fmpz_pow_ui(t2, bcont, d1); |
| 3017 | fmpz_set(t1, rest); |
| 3018 | fmpz_mul(rest, t1, t2); |
| 3019 | } |
| 3020 | |
| 3021 | fmpz_to_mpz(mpq_numref(rop), rest); |
| 3022 | |
| 3023 | if (_fmpq_poly_den_is_one(a)) |
| 3024 | { |
| 3025 | if (_fmpq_poly_den_is_one(b)) |
| 3026 | fmpz_set_si(rest, 1); |
| 3027 | else |
| 3028 | fmpz_pow_ui(rest, b->den, d1); |
| 3029 | } |
| 3030 | else |
| 3031 | { |
| 3032 | if (_fmpq_poly_den_is_one(b)) |
| 3033 | fmpz_pow_ui(rest, a->den, d2); |
| 3034 | else |
| 3035 | { |
| 3036 | fmpz_pow_ui(t1, a->den, d2); |
| 3037 | fmpz_pow_ui(t2, b->den, d1); |
| 3038 | fmpz_mul(rest, t1, t2); |
| 3039 | } |
| 3040 | } |
| 3041 | |
| 3042 | fmpz_to_mpz(mpq_denref(rop), rest); |
| 3043 | mpq_canonicalize(rop); |
| 3044 | |
| 3045 | /* Clean up */ |
| 3046 | fmpz_clear(rest); |
| 3047 | fmpz_clear(t1); |
| 3048 | fmpz_clear(t2); |
| 3049 | fmpz_poly_clear(anum); |
| 3050 | fmpz_poly_clear(bnum); |
| 3051 | fmpz_clear(acont); |
| 3052 | fmpz_clear(bcont); |
| 3053 | fmpz_poly_clear(g); |
| 3054 | } |
| 3055 | |
| 3056 | /** |
| 3057 | * \brief Computes the discriminant of \c a. |
| 3058 | * \ingroup Discriminant |
| 3059 | * |
| 3060 | * Computes the discriminant of the polynomial \f$a\f$. |
| 3061 | * |
| 3062 | * The discriminant \f$R_n\f$ is defined as |
| 3063 | * \f[ |
| 3064 | * R_n = a_n^{2 n-2} \prod_{1 \le i < j \le n} (r_i - r_j)^2, |
| 3065 | * \f] |
| 3066 | * where \f$n\f$ is the degree of this polynomial, \f$a_n\f$ is the leading |
| 3067 | * coefficient and \f$r_1, \ldots, r_n\f$ are the roots over |
| 3068 | * \f$\bar{\mathbf{Q}}\f$ are. |
| 3069 | * |
| 3070 | * The discriminant of constant polynomials is defined to be \f$0\f$. |
| 3071 | * |
| 3072 | * This implementation uses the identity |
| 3073 | * \f[ |
| 3074 | * R_n(f) := (-1)^(n (n-1)/2) R(f,f') / a_n, |
| 3075 | * \f] |
| 3076 | * where \f$n\f$ is the degree of this polynomial, \f$a_n\f$ is the leading |
| 3077 | * coefficient and \f$f'\f$ is the derivative of \f$f\f$. |
| 3078 | * |
| 3079 | * \see #fmpq_poly_resultant() |
| 3080 | */ |
| 3081 | void fmpq_poly_discriminant(mpq_t disc, fmpq_poly_t a) |
| 3082 | { |
| 3083 | fmpq_poly_t der; |
| 3084 | mpq_t t; |
| 3085 | long n; |
| 3086 | |
| 3087 | n = fmpq_poly_degree(a); |
| 3088 | if (n < 1) |
| 3089 | { |
| 3090 | mpq_set_si(disc, 0, 1); |
| 3091 | return; |
| 3092 | } |
| 3093 | |
| 3094 | fmpq_poly_init(der); |
| 3095 | fmpq_poly_derivative(der, a); |
| 3096 | fmpq_poly_resultant(disc, a, der); |
| 3097 | mpq_init(t); |
| 3098 | mpq_set_si(t, 1, 1); |
| 3099 | |
| 3100 | if (a->den != NULL) |
| 3101 | fmpz_to_mpz(mpq_numref(t), a->den); |
| 3102 | if (!fmpz_is_one(fmpz_poly_lead(a->num))) |
| 3103 | fmpz_to_mpz(mpq_denref(t), fmpz_poly_lead(a->num)); |
| 3104 | mpq_canonicalize(t); |
| 3105 | mpq_mul(disc, disc, t); |
| 3106 | |
| 3107 | if (n % 4 > 1) |
| 3108 | mpz_neg(mpq_numref(disc), mpq_numref(disc)); |
| 3109 | |
| 3110 | fmpq_poly_clear(der); |
| 3111 | mpq_clear(t); |
| 3112 | } |
| 3113 | |
| 3114 | /////////////////////////////////////////////////////////////////////////////// |
| 3115 | // Composition |
| 3116 | |
| 3117 | /** |
| 3118 | * \brief Returns the composition of \c a and \c b. |
| 3119 | * \ingroup Composition |
| 3120 | * |
| 3121 | * Returns the composition of \c a and \c b. |
| 3122 | * |
| 3123 | * To be clear about the order of the composition, denoting the polynomials |
| 3124 | * \f$a(T)\f$ and \f$b(T)\f$, returns the polynomial \f$a(b(T))\f$. |
| 3125 | */ |
| 3126 | void fmpq_poly_compose(fmpq_poly_ptr rop, const fmpq_poly_ptr a, const fmpq_poly_ptr b) |
| 3127 | { |
| 3128 | mpq_t x; /* Rational to hold the inverse of b->den */ |
| 3129 | fmpq_poly_t tempr; /* Temporary variable to handle aliasing */ |
| 3130 | |
| 3131 | if (_fmpq_poly_den_is_one(b)) |
| 3132 | { |
| 3133 | fmpz_poly_compose(rop->num, a->num, b->num); |
| 3134 | fmpq_poly_set_den(rop, a->den); |
| 3135 | fmpq_poly_canonicalize(rop, NULL); |
| 3136 | return; |
| 3137 | } |
| 3138 | |
| 3139 | /* Aliasing. */ |
| 3140 | /* */ |
| 3141 | /* Note that rop and a, as well as a and b may be aliased, but rop and */ |
| 3142 | /* b may not be aliased. */ |
| 3143 | if (rop == b) |
| 3144 | { |
| 3145 | fmpq_poly_init(tempr); |
| 3146 | fmpq_poly_compose(tempr, a, b); |
| 3147 | fmpq_poly_swap(rop, tempr); |
| 3148 | fmpq_poly_clear(tempr); |
| 3149 | return; |
| 3150 | } |
| 3151 | |
| 3152 | /* Set x = 1/b.den, and note this is already in canonical form. */ |
| 3153 | mpq_init(x); |
| 3154 | mpz_set_si(mpq_numref(x), 1); |
| 3155 | fmpz_to_mpz(mpq_denref(x), b->den); |
| 3156 | |
| 3157 | /* First set rop = a(T / b.den) and then use FLINT's composition to */ |
| 3158 | /* set rop->num = rop->num(b->num). */ |
| 3159 | fmpq_poly_rescale(rop, a, x); |
| 3160 | fmpz_poly_compose(rop->num, rop->num, b->num); |
| 3161 | fmpq_poly_canonicalize(rop, NULL); |
| 3162 | |
| 3163 | mpq_clear(x); |
| 3164 | } |
| 3165 | |
| 3166 | /** |
| 3167 | * \brief Rescales the co-ordinate. |
| 3168 | * \ingroup Composition |
| 3169 | * |
| 3170 | * Denoting this polynomial \f$a(T)\f$, computes the polynomial \f$a(x T)\f$. |
| 3171 | */ |
| 3172 | void fmpq_poly_rescale(fmpq_poly_ptr rop, const fmpq_poly_ptr op, const mpq_t x) |
| 3173 | { |
| 3174 | unsigned long numsize, densize; |
| 3175 | unsigned long limbs; |
| 3176 | fmpz_t num, den; |
| 3177 | fmpz_t coeff, power, t; |
| 3178 | long i, n; |
| 3179 | |
| 3180 | fmpq_poly_set(rop, op); |
| 3181 | |
| 3182 | if (fmpq_poly_degree(rop) < 1) |
| 3183 | return; |
| 3184 | |
| 3185 | num = fmpz_init(mpz_size(mpq_numref(x))); |
| 3186 | den = fmpz_init(mpz_size(mpq_denref(x))); |
| 3187 | mpz_to_fmpz(num, mpq_numref(x)); |
| 3188 | mpz_to_fmpz(den, mpq_denref(x)); |
| 3189 | numsize = fmpz_size(num); |
| 3190 | densize = fmpz_size(den); |
| 3191 | |
| 3192 | n = fmpz_poly_degree(rop->num); |
| 3193 | |
| 3194 | if (fmpz_is_one(den)) |
| 3195 | { |
| 3196 | coeff = fmpz_init(rop->num->limbs + n * numsize); |
| 3197 | power = fmpz_init(n * numsize); |
| 3198 | t = fmpz_init(rop->num->limbs + n * numsize); |
| 3199 | |
| 3200 | fmpz_set(power, num); |
| 3201 | |
| 3202 | fmpz_poly_get_coeff_fmpz(t, rop->num, 1); |
| 3203 | fmpz_mul(coeff, t, power); |
| 3204 | fmpz_poly_set_coeff_fmpz(rop->num, 1, coeff); |
| 3205 | |
| 3206 | for (i = 2; i <= n; i++) |
| 3207 | { |
| 3208 | fmpz_set(t, power); |
| 3209 | fmpz_mul(power, t, num); |
| 3210 | fmpz_poly_get_coeff_fmpz(t, rop->num, i); |
| 3211 | fmpz_mul(coeff, t, power); |
| 3212 | fmpz_poly_set_coeff_fmpz(rop->num, i, coeff); |
| 3213 | } |
| 3214 | } |
| 3215 | else |
| 3216 | { |
| 3217 | coeff = fmpz_init(rop->num->limbs + n * (numsize + densize)); |
| 3218 | power = fmpz_init(n * (numsize + densize)); |
| 3219 | limbs = rop->num->limbs + n * (numsize + densize); |
| 3220 | if (rop->den != NULL) |
| 3221 | limbs = FLINT_MAX(limbs, fmpz_size(rop->den)); |
| 3222 | t = fmpz_init(limbs); |
| 3223 | |
| 3224 | fmpz_pow_ui(power, den, n); |
| 3225 | |
| 3226 | if (rop->den == NULL) |
| 3227 | { |
| 3228 | rop->den = fmpz_init(n * densize); |
| 3229 | fmpz_set(rop->den, power); |
| 3230 | } |
| 3231 | else |
| 3232 | { |
| 3233 | fmpz_set(t, rop->den); |
| 3234 | limbs = n * densize + fmpz_size(rop->den); |
| 3235 | if (fmpz_size(rop->den) < limbs) |
| 3236 | rop->den = fmpz_realloc(rop->den, limbs); |
| 3237 | fmpz_mul(rop->den, power, t); |
| 3238 | } |
| 3239 | |
| 3240 | fmpz_set_si(power, 1); |
| 3241 | for (i = n-1; i >= 0; i--) |
| 3242 | { |
| 3243 | fmpz_set(t, power); |
| 3244 | fmpz_mul(power, t, den); |
| 3245 | fmpz_poly_get_coeff_fmpz(t, rop->num, i); |
| 3246 | fmpz_mul(coeff, t, power); |
| 3247 | fmpz_poly_set_coeff_fmpz(rop->num, i, coeff); |
| 3248 | } |
| 3249 | |
| 3250 | fmpz_set_si(power, 1); |
| 3251 | for (i = 1; i <= n; i++) |
| 3252 | { |
| 3253 | fmpz_set(t, power); |
| 3254 | fmpz_mul(power, t, num); |
| 3255 | fmpz_poly_get_coeff_fmpz(t, rop->num, i); |
| 3256 | fmpz_mul(coeff, t, power); |
| 3257 | fmpz_poly_set_coeff_fmpz(rop->num, i, coeff); |
| 3258 | } |
| 3259 | } |
| 3260 | fmpq_poly_canonicalize(rop, NULL); |
| 3261 | fmpz_clear(num); |
| 3262 | fmpz_clear(den); |
| 3263 | fmpz_clear(coeff); |
| 3264 | fmpz_clear(power); |
| 3265 | fmpz_clear(t); |
| 3266 | } |
| 3267 | |
| 3268 | /////////////////////////////////////////////////////////////////////////////// |
| 3269 | // Square-free |
| 3270 | |
| 3271 | /** |
| 3272 | * \brief Returns whether \c op is squarefree. |
| 3273 | * \ingroup Squarefree |
| 3274 | * |
| 3275 | * Returns whether \c op is squarefree. |
| 3276 | * |
| 3277 | * By definition, a polynomial is square-free if it is not a multiple of a |
| 3278 | * non-unit factor. In particular, polynomials up to degree 1 (including) |
| 3279 | * are square-free. |
| 3280 | */ |
| 3281 | int fmpq_poly_is_squarefree(const fmpq_poly_ptr op) |
| 3282 | { |
| 3283 | fmpz_poly_t prim; |
| 3284 | int ans; |
| 3285 | if (fmpq_poly_degree(op) < 2) |
| 3286 | return 1; |
| 3287 | else |
| 3288 | { |
| 3289 | fmpz_poly_init(prim); |
| 3290 | fmpz_poly_primitive_part(prim, op->num); |
| 3291 | ans = fmpz_poly_is_squarefree(prim); |
| 3292 | fmpz_poly_clear(prim); |
| 3293 | return ans; |
| 3294 | } |
| 3295 | } |
| 3296 | |
| 3297 | /////////////////////////////////////////////////////////////////////////////// |
| 3298 | // Subpolynomials |
| 3299 | |
| 3300 | /** |
| 3301 | * \brief Returns a contiguous subpolynomial. |
| 3302 | * \ingroup Subpolynomials |
| 3303 | * |
| 3304 | * Returns the slice with coefficients from \f$x^i\f$ (including) to |
| 3305 | * \f$x^j\f$ (excluding). |
| 3306 | */ |
| 3307 | void fmpq_poly_getslice(fmpq_poly_ptr rop, const fmpq_poly_ptr op, long i, long j) |
| 3308 | { |
| 3309 | long k; |
| 3310 | |
| 3311 | i = FLINT_MAX(0, i); |
| 3312 | j = FLINT_MIN(fmpq_poly_degree(op) + 1, j); |
| 3313 | |
| 3314 | /* Aliasing */ |
| 3315 | if (rop == op) |
| 3316 | { |
| 3317 | for (k = 0; k < i; k++) |
| 3318 | fmpz_poly_set_coeff_si(rop->num, k, 0); |
| 3319 | for (k = j; k <= fmpz_poly_degree(rop->num); k++) |
| 3320 | fmpz_poly_set_coeff_si(rop->num, k, 0); |
| 3321 | fmpq_poly_canonicalize(rop, NULL); |
| 3322 | return; |
| 3323 | } |
| 3324 | |
| 3325 | fmpz_poly_zero(rop->num); |
| 3326 | if (i < j) |
| 3327 | { |
| 3328 | for (k = i; k < j; k++) |
| 3329 | fmpz_poly_set_coeff_fmpz(rop->num, k, |
| 3330 | fmpz_poly_get_coeff_ptr(op->num, k)); |
| 3331 | fmpq_poly_set_den(rop, op->den); |
| 3332 | fmpq_poly_canonicalize(rop, NULL); |
| 3333 | } |
| 3334 | else |
| 3335 | { |
| 3336 | if (rop->den != NULL) |
| 3337 | fmpz_set_si(rop->den, 1); |
| 3338 | } |
| 3339 | } |
| 3340 | |
| 3341 | /** |
| 3342 | * \brief Shifts this polynomial. |
| 3343 | * \ingroup Subpolynomials |
| 3344 | * |
| 3345 | * Multiplies \c op by \f$x^n\f$. If \f$n\f$ is negative, terms below |
| 3346 | * \f$x^n\f$ are simply discarded. |
| 3347 | */ |
| 3348 | void fmpq_poly_shift(fmpq_poly_ptr rop, const fmpq_poly_ptr op, long n) |
| 3349 | { |
| 3350 | /* XXX: As a workaround for a bug in FLINT 1.5.1, we need to handle */ |
| 3351 | /* the zero polynomial separately. */ |
| 3352 | if (fmpq_poly_is_zero(op)) |
| 3353 | { |
| 3354 | fmpq_poly_zero(rop); |
| 3355 | return; |
| 3356 | } |
| 3357 | |
| 3358 | if (n > 0) |
| 3359 | { |
| 3360 | fmpz_poly_left_shift(rop->num, op->num, n); |
| 3361 | fmpq_poly_set_den(rop, op->den); |
| 3362 | } |
| 3363 | else if (n < 0) |
| 3364 | { |
| 3365 | fmpz_poly_right_shift(rop->num, op->num, -n); |
| 3366 | fmpq_poly_set_den(rop, op->den); |
| 3367 | fmpq_poly_canonicalize(rop, NULL); |
| 3368 | } |
| 3369 | else |
| 3370 | { |
| 3371 | fmpq_poly_set(rop, op); |
| 3372 | } |
| 3373 | } |
| 3374 | |
| 3375 | /** |
| 3376 | * \brief Truncates this polynomials. |
| 3377 | * \ingroup Subpolynomials |
| 3378 | * |
| 3379 | * Truncates <tt>op</tt> modulo \f$x^n\f$ whenever \f$n\f$ is positive. |
| 3380 | * Returns zero otherwise. |
| 3381 | */ |
| 3382 | void fmpq_poly_truncate(fmpq_poly_ptr rop, const fmpq_poly_ptr op, unsigned long n) |
| 3383 | { |
| 3384 | fmpq_poly_set(rop, op); |
| 3385 | if (fmpq_poly_degree(rop) >= n) |
| 3386 | { |
| 3387 | fmpz_poly_truncate(rop->num, n); |
| 3388 | fmpq_poly_canonicalize(rop, NULL); |
| 3389 | } |
| 3390 | } |
| 3391 | |
| 3392 | /** |
| 3393 | * \brief Reverses this polynomial. |
| 3394 | * \ingroup Subpolynomials |
| 3395 | * |
| 3396 | * Reverses the coefficients of \c op and places the result in <tt>rop</tt>. |
| 3397 | */ |
| 3398 | void fmpq_poly_reverse(fmpq_poly_ptr rop, const fmpq_poly_ptr op) |
| 3399 | { |
| 3400 | if (fmpz_poly_degree(op->num) < 1) |
| 3401 | fmpq_poly_set(rop, op); |
| 3402 | else |
| 3403 | { |
| 3404 | fmpz_poly_reverse(rop->num, op->num, fmpz_poly_length(op->num)); |
| 3405 | fmpq_poly_set_den(rop, op->den); |
| 3406 | } |
| 3407 | } |
| 3408 | |
| 3409 | /////////////////////////////////////////////////////////////////////////////// |
| 3410 | // String conversion |
| 3411 | |
| 3412 | /** |
| 3413 | * \addtogroup StringConversions |
| 3414 | * |
| 3415 | * The following three methods enable users to construct elements of type |
| 3416 | * \c fmpq_poly_ptr from strings or to obtain string representations of such |
| 3417 | * elements. |
| 3418 | * |
| 3419 | * The format used is based on the FLINT format for integer polynomials of |
| 3420 | * type <tt>fmpz_poly_t</tt>, which we recall first: |
| 3421 | * |
| 3422 | * A non-zero polynomial \f$a_0 + a_1 X + \dotsb + a_n X^n\f$ of length |
| 3423 | * \f$n + 1\f$ is represented by the string <tt>n+1 a_0 a_1 ... a_n</tt>, |
| 3424 | * where there are two space characters following the length and single space |
| 3425 | * characters separating the individual coefficients. There is no leading or |
| 3426 | * trailing white-space. In contrast, the zero polynomial is represented by |
| 3427 | * <tt>0</tt>. |
| 3428 | * |
| 3429 | * We adapt this notation for rational polynomials by using the <tt>mpq_t</tt> |
| 3430 | * notation for the coefficients without any additional white-space. |
| 3431 | * |
| 3432 | * There is also a <tt>_pretty</tt> variant available. |
| 3433 | * |
| 3434 | * Note that currently these functions are not optimized for performance and |
| 3435 | * are intended to be used only for debugging purposes or one-off input and |
| 3436 | * output, rather than as a low-level parser. |
| 3437 | */ |
| 3438 | |
| 3439 | /** |
| 3440 | * \ingroup StringConversions |
| 3441 | * |
| 3442 | * Sets the rational polynomial \c rop to the value specified by the |
| 3443 | * null-terminated string \c str. |
| 3444 | * |
| 3445 | * The behaviour is undefined if the format of the string \c str does not |
| 3446 | * conform to the specification. |
| 3447 | * |
| 3448 | * \todo In a future version, it would be nice to have this function return |
| 3449 | * <tt>0</tt> or <tt>1</tt> depending on whether the input format |
| 3450 | * was correct. Currently, the method always returns <tt>1</tt>. |
| 3451 | */ |
| 3452 | int fmpq_poly_from_string(fmpq_poly_ptr rop, const char * str) |
| 3453 | { |
| 3454 | mpq_t * a; |
| 3455 | mpz_t den, t; |
| 3456 | char * strcopy; |
| 3457 | unsigned long strcopy_len; |
| 3458 | unsigned long i, j, k, n; |
| 3459 | |
| 3460 | n = atoi(str); |
| 3461 | |
| 3462 | /* Handle the case of the zero polynomial */ |
| 3463 | if (n == 0) |
| 3464 | { |
| 3465 | fmpq_poly_zero(rop); |
| 3466 | return 1; |
| 3467 | } |
| 3468 | |
| 3469 | /* Compute the maximum length that the copy buffer has to be */ |
| 3470 | strcopy_len = 0; |
| 3471 | for (j = 0; str[j] != ' '; j++); |
| 3472 | j += 2; |
| 3473 | for (i = 0; i < n; i++) |
| 3474 | { |
| 3475 | for (k = j; !(str[k] == ' ' || str[k] == '\0'); k++); |
| 3476 | strcopy_len = FLINT_MAX(strcopy_len, k - j + 1); |
| 3477 | j = k + 1; |
| 3478 | } |
| 3479 | strcopy = (char *) calloc(strcopy_len, sizeof(char)); |
| 3480 | |
| 3481 | /* Read the data into the array a of mpq_t's */ |
| 3482 | mpz_init_set_si(den, 1); |
| 3483 | a = (mpq_t *) calloc(n, sizeof(mpq_t)); |
| 3484 | for (j = 0; str[j] != ' '; j++); |
| 3485 | j += 2; |
| 3486 | for (i = 0; i < n; i++) |
| 3487 | { |
| 3488 | for (k = j; !(str[k] == ' ' || str[k] == '\0'); k++); |
| 3489 | memcpy(strcopy, str + j, k - j + 1); |
| 3490 | strcopy[k - j] = '\0'; |
| 3491 | |
| 3492 | mpq_init(a[i]); |
| 3493 | mpq_set_str(a[i], strcopy, 10); |
| 3494 | mpq_canonicalize(a[i]); |
| 3495 | j = k + 1; |
| 3496 | |
| 3497 | mpz_lcm(den, den, mpq_denref(a[i])); |
| 3498 | } |
| 3499 | |
| 3500 | /* Re-adjust the coefficients to the common denominator */ |
| 3501 | mpz_init(t); |
| 3502 | for (i = 0; i < n; i++) |
| 3503 | { |
| 3504 | mpz_divexact(t, den, mpq_denref(a[i])); |
| 3505 | mpz_mul(mpq_numref(a[i]), mpq_numref(a[i]), t); |
| 3506 | } |
| 3507 | |
| 3508 | /* Transfer the data to the fmpq_poly_t rop */ |
| 3509 | fmpz_poly_realloc(rop->num, n); |
| 3510 | i = n; |
| 3511 | do |
| 3512 | { |
| 3513 | i--; |
| 3514 | fmpz_poly_set_coeff_mpz(rop->num, i, mpq_numref(a[i])); |
| 3515 | } while (i != 0); |
| 3516 | if (mpz_cmp_si(den, 1) == 0) |
| 3517 | { |
| 3518 | if (rop->den != NULL) |
| 3519 | { |
| 3520 | fmpz_clear(rop->den); |
| 3521 | rop->den = NULL; |
| 3522 | } |
| 3523 | } |
| 3524 | else |
| 3525 | { |
| 3526 | _fmpq_poly_den_fit_limbs(rop, mpz_size(den)); |
| 3527 | mpz_to_fmpz(rop->den, den); |
| 3528 | } |
| 3529 | |
| 3530 | /* Clean-up */ |
| 3531 | free(strcopy); |
| 3532 | for (i = 0; i < n; i++) |
| 3533 | mpq_clear(a[i]); |
| 3534 | free(a); |
| 3535 | mpz_clear(den); |
| 3536 | mpz_clear(t); |
| 3537 | |
| 3538 | return 1; |
| 3539 | } |
| 3540 | |
| 3541 | /** |
| 3542 | * \ingroup StringConversions |
| 3543 | * |
| 3544 | * Returns the string representation of the rational polynomial \c op. |
| 3545 | */ |
| 3546 | char * fmpq_poly_to_string(const fmpq_poly_ptr op) |
| 3547 | { |
| 3548 | unsigned long i, j; |
| 3549 | unsigned long len; /* Upper bound on the length */ |
| 3550 | unsigned long denlen; /* Size of the denominator in base 10 */ |
| 3551 | mpz_t z; |
| 3552 | mpq_t q; |
| 3553 | |
| 3554 | char * str; |
| 3555 | |
| 3556 | if (fmpq_poly_is_zero(op)) |
| 3557 | { |
| 3558 | str = calloc(2, sizeof(char)); |
| 3559 | str[0] = '0'; |
| 3560 | str[1] = '\0'; |
| 3561 | return str; |
| 3562 | } |
| 3563 | |
| 3564 | mpz_init(z); |
| 3565 | if (_fmpq_poly_den_is_one(op)) |
| 3566 | { |
| 3567 | denlen = 0; |
| 3568 | } |
| 3569 | else |
| 3570 | { |
| 3571 | fmpz_to_mpz(z, op->den); |
| 3572 | denlen = mpz_sizeinbase(z, 10); |
| 3573 | } |
| 3574 | len = fmpq_poly_places(fmpq_poly_length(op)) + 2; |
| 3575 | for (i = 0; i < fmpq_poly_length(op); i++) |
| 3576 | { |
| 3577 | fmpz_poly_get_coeff_mpz(z, op->num, i); |
| 3578 | len += mpz_sizeinbase(z, 10) + 1; |
| 3579 | if (mpz_sgn(z) != 0) |
| 3580 | len += 2 + denlen; |
| 3581 | } |
| 3582 | |
| 3583 | mpq_init(q); |
| 3584 | str = calloc(len, sizeof(char)); |
| 3585 | sprintf(str, "%lu", fmpq_poly_length(op)); |
| 3586 | for (j = 0; str[j] != '\0'; j++); |
| 3587 | str[j++] = ' '; |
| 3588 | for (i = 0; i < fmpq_poly_length(op); i++) |
| 3589 | { |
| 3590 | str[j++] = ' '; |
| 3591 | fmpz_poly_get_coeff_mpz(mpq_numref(q), op->num, i); |
| 3592 | if (op->den == NULL) |
| 3593 | mpz_set_si(mpq_denref(q), 1); |
| 3594 | else |
| 3595 | fmpz_to_mpz(mpq_denref(q), op->den); |
| 3596 | mpq_canonicalize(q); |
| 3597 | mpq_get_str(str + j, 10, q); |
| 3598 | for ( ; str[j] != '\0'; j++); |
| 3599 | } |
| 3600 | |
| 3601 | mpq_clear(q); |
| 3602 | mpz_clear(z); |
| 3603 | |
| 3604 | return str; |
| 3605 | } |
| 3606 | |
| 3607 | /** |
| 3608 | * \ingroup StringConversions |
| 3609 | * |
| 3610 | * Returns the pretty string representation of \c op. |
| 3611 | * |
| 3612 | * Returns the pretty string representation of the rational polynomial \c op, |
| 3613 | * using the string \c var as the variable name. |
| 3614 | */ |
| 3615 | char * fmpq_poly_to_string_pretty(const fmpq_poly_ptr op, const char * var) |
| 3616 | { |
| 3617 | long i; |
| 3618 | unsigned long j; |
| 3619 | unsigned long len; /* Upper bound on the length */ |
| 3620 | unsigned long denlen; /* Size of the denominator in base 10 */ |
| 3621 | unsigned long varlen; /* Length of the variable name */ |
| 3622 | mpz_t z; /* op->den (if this is not 1) */ |
| 3623 | mpq_t q; |
| 3624 | char * str; |
| 3625 | |
| 3626 | if (fmpq_poly_is_zero(op)) /* Zero polynomial */ |
| 3627 | { |
| 3628 | str = calloc(2, sizeof(char)); |
| 3629 | str[0] = '0'; |
| 3630 | str[1] = '\0'; |
| 3631 | return str; |
| 3632 | } |
| 3633 | if (fmpq_poly_degree(op) == 0) /* Constant polynomials */ |
| 3634 | { |
| 3635 | mpq_init(q); |
| 3636 | fmpz_to_mpz(mpq_numref(q), fmpz_poly_lead(op->num)); |
| 3637 | if (op->den == NULL) |
| 3638 | mpz_set_si(mpq_denref(q), 1); |
| 3639 | else |
| 3640 | { |
| 3641 | fmpz_to_mpz(mpq_denref(q), op->den); |
| 3642 | mpq_canonicalize(q); |
| 3643 | } |
| 3644 | str = mpq_get_str(NULL, 10, q); |
| 3645 | mpq_clear(q); |
| 3646 | return str; |
| 3647 | } |
| 3648 | |
| 3649 | varlen = strlen(var); |
| 3650 | |
| 3651 | /* Copy the denominator into an mpz_t */ |
| 3652 | mpz_init(z); |
| 3653 | if (_fmpq_poly_den_is_one(op)) |
| 3654 | { |
| 3655 | denlen = 0; |
| 3656 | } |
| 3657 | else |
| 3658 | { |
| 3659 | fmpz_to_mpz(z, op->den); |
| 3660 | denlen = mpz_sizeinbase(z, 10); |
| 3661 | } |
| 3662 | |
| 3663 | /* Estimate the length */ |
| 3664 | len = 0; |
| 3665 | for (i = 0; i < fmpq_poly_length(op); i++) |
| 3666 | { |
| 3667 | fmpz_poly_get_coeff_mpz(z, op->num, i); |
| 3668 | len += mpz_sizeinbase(z, 10); /* Numerator */ |
| 3669 | if (mpz_sgn(z) != 0) |
| 3670 | len += 1 + denlen; /* Denominator and / */ |
| 3671 | len += 3; /* Operator and whitespace */ |
| 3672 | len += 1 + varlen + 1; /* *, x and ^ */ |
| 3673 | len += fmpq_poly_places(i); /* Exponent */ |
| 3674 | } |
| 3675 | |
| 3676 | mpq_init(q); |
| 3677 | str = calloc(len, sizeof(char)); |
| 3678 | j = 0; |
| 3679 | |
| 3680 | /* Print the leading term */ |
| 3681 | fmpz_to_mpz(mpq_numref(q), fmpz_poly_lead(op->num)); |
| 3682 | if (op->den == NULL) |
| 3683 | mpz_set_si(mpq_denref(q), 1); |
| 3684 | else |
| 3685 | fmpz_to_mpz(mpq_denref(q), op->den); |
| 3686 | mpq_canonicalize(q); |
| 3687 | |
| 3688 | if (mpq_cmp_si(q, 1, 1) != 0) |
| 3689 | { |
| 3690 | if (mpq_cmp_si(q, -1, 1) == 0) |
| 3691 | str[j++] = '-'; |
| 3692 | else |
| 3693 | { |
| 3694 | mpq_get_str(str, 10, q); |
| 3695 | for ( ; str[j] != '\0'; j++); |
| 3696 | str[j++] = '*'; |
| 3697 | } |
| 3698 | } |
| 3699 | sprintf(str + j, "%s", var); |
| 3700 | j += varlen; |
| 3701 | if (fmpz_poly_degree(op->num) > 1) |
| 3702 | { |
| 3703 | str[j++] = '^'; |
| 3704 | sprintf(str + j, "%li", fmpz_poly_degree(op->num)); |
| 3705 | for ( ; str[j] != '\0'; j++); |
| 3706 | } |
| 3707 | |
| 3708 | for (i = fmpq_poly_degree(op) - 1; i >= 0; i--) |
| 3709 | { |
| 3710 | if (fmpz_is_zero(fmpz_poly_get_coeff_ptr(op->num, i))) |
| 3711 | continue; |
| 3712 | |
| 3713 | fmpz_poly_get_coeff_mpz(mpq_numref(q), op->num, i); |
| 3714 | if (op->den == NULL) |
| 3715 | mpz_set_si(mpq_denref(q), 1); |
| 3716 | else |
| 3717 | fmpz_to_mpz(mpq_denref(q), op->den); |
| 3718 | mpq_canonicalize(q); |
| 3719 | |
| 3720 | str[j++] = ' '; |
| 3721 | if (mpq_sgn(q) < 0) |
| 3722 | { |
| 3723 | mpq_abs(q, q); |
| 3724 | str[j++] = '-'; |
| 3725 | } |
| 3726 | else |
| 3727 | str[j++] = '+'; |
| 3728 | str[j++] = ' '; |
| 3729 | |
| 3730 | mpq_get_str(str + j, 10, q); |
| 3731 | for ( ; str[j] != '\0'; j++); |
| 3732 | |
| 3733 | if (i > 0) |
| 3734 | { |
| 3735 | str[j++] = '*'; |
| 3736 | sprintf(str + j, "%s", var); |
| 3737 | j += varlen; |
| 3738 | if (i > 1) |
| 3739 | { |
| 3740 | str[j++] = '^'; |
| 3741 | sprintf(str + j, "%li", i); |
| 3742 | for ( ; str[j] != '\0'; j++); |
| 3743 | } |
| 3744 | } |
| 3745 | } |
| 3746 | |
| 3747 | mpq_clear(q); |
| 3748 | mpz_clear(z); |
| 3749 | return str; |
| 3750 | } |
| 3751 | |