Ticket #9359: 9359_rebase_to_8334.patch

File 9359_rebase_to_8334.patch, 3.5 KB (added by Jeroen Demeyer, 12 years ago)

Apply on top of #7883, #9898, #9753, #9764, #8334 and trac_9359.patch

  • sage/rings/number_field/number_field_ideal.py

    # HG changeset patch
    # User Jeroen Demeyer <jdemeyer@cage.ugent.be>
    # Date 1285581087 -7200
    # Node ID 90431b1621a38b6eee34851e7f231fa5cb000b8f
    # Parent  258b3b6f8649c200ce48f83031ba5ff05d7c4bf2
    #9359: rebase to #8334
    
    diff -r 258b3b6f8649 -r 90431b1621a3 sage/rings/number_field/number_field_ideal.py
    a b  
    26952695       
    26962696            sage: K.<a> = NumberField(x^3 + 4)
    26972697            sage: f = K.ideal(1 + a^2/2).residue_field().reduction_map(); f # indirect doctest
    2698             Partially defined reduction map from Number Field in a with defining polynomial x^3 + 4 to Residue field of Fractional ideal (1/2*a^2 + 1)
     2698            Partially defined reduction map:
     2699              From: Number Field in a with defining polynomial x^3 + 4
     2700              To:   Residue field of Fractional ideal (1/2*a^2 + 1)
    26992701            sage: f.__class__
    2700             <class sage.rings.residue_field.ReductionMap at ...>
     2702            <type 'sage.rings.residue_field.ReductionMap'>
    27012703        """
    27022704        self.__M_OK_change = M_OK_change
    27032705        self.__Q = Q
     
    27332735            sage: K.<a> = NumberField(x^3 + 4)
    27342736            sage: f = K.ideal(1 + a^2/2).residue_field().reduction_map()
    27352737            sage: repr(f)
    2736             'Partially defined reduction map from Number Field in a with defining polynomial x^3 + 4 to Residue field of Fractional ideal (1/2*a^2 + 1)'
     2738            'Partially defined reduction map:\n  From: Number Field in a with defining polynomial x^3 + 4\n  To:  Residue field of Fractional ideal (1/2*a^2 + 1)'
    27372739        """
    27382740        return "Partially defined quotient map from %s to an explicit vector space representation for the quotient of the ring of integers by (p,I) for the ideal I=%s."%(self.__K, self.__I)
    27392741   
     
    27522754            sage: I = K.ideal(1 + a^2/2)
    27532755            sage: f = I.residue_field().lift_map()
    27542756            sage: f.__class__
    2755             <class sage.rings.residue_field.LiftingMap at ...>
     2757            <type 'sage.rings.residue_field.LiftingMap'>
    27562758        """
    27572759        self.__I = I
    27582760        self.__OK = OK
     
    27882790            sage: K.<a> = NumberField(x^3 + 4)
    27892791            sage: R = K.ideal(1 + a^2/2).residue_field()
    27902792            sage: repr(R.lift_map())
    2791             'Lifting map from Residue field of Fractional ideal (1/2*a^2 + 1) to Number Field in a with defining polynomial x^3 + 4'
     2793            'Lifting map:\n  From: Residue field of Fractional ideal (1/2*a^2 + 1)\n  To:   Maximal Order in Number Field in a with defining polynomial x^3 + 4'
    27922794        """
    27932795        return "Lifting map to %s from quotient of integers by %s"%(self.__OK, self.__I)
    27942796
  • sage/rings/number_field/number_field_ideal_rel.py

    diff -r 258b3b6f8649 -r 90431b1621a3 sage/rings/number_field/number_field_ideal_rel.py
    a b  
    649649            sage: I = K.ideal(3, c)
    650650            sage: I.relative_ramification_index()
    651651            2
    652             sage: I.ideal_below()
    653             Fractional ideal (-b)  # 32-bit
    654             Fractional ideal (b)   # 64-bit
     652            sage: I.ideal_below()  # random sign
     653            Fractional ideal (b)
     654            sage: I.ideal_below() == K.ideal(b)
     655            True
    655656            sage: K.ideal(b) == I^2
    656657            True
    657658        """