Ticket #9054: trac_9054-review2.patch

File trac_9054-review2.patch, 3.5 KB (added by mderickx, 6 years ago)

Fixes last minor errors introduced by julians patches

  • sage/rings/function_field/function_field_order.py

    # HG changeset patch
    # User Maarten Derickx <m.derickx.student@gmail.com>
    # Date 1320671100 28800
    # Node ID 3f460566bb7ef859531f4055434a630ae8f9bcab
    # Parent  e9358921aa011e6d19abdcf60337ead44f405d57
    #9054 fix last few doctests.
    
    diff --git a/sage/rings/function_field/function_field_order.py b/sage/rings/function_field/function_field_order.py
    a b  
    214214            sage: O = L.equation_order(); O
    215215            Order in Function field in y defined by y^4 + x*y + 4*x + 1
    216216            sage: type(O)
    217             <class 'sage.rings.function_field.function_field_order.FunctionFieldOrder_basis'>
     217            <class 'sage.rings.function_field.function_field_order.FunctionFieldOrder_basis_with_category'>
    218218
    219219        The basis only defines an order if the module it generates is closed under multiplication
    220220         and contains the identity element (only checked when ``check`` is True)::
     
    365365            sage: R = K.maximal_order(); R
    366366            Maximal order in Rational function field in t over Finite Field of size 19
    367367            sage: type(R)
    368             <class 'sage.rings.function_field.function_field_order.FunctionFieldOrder_rational'>
     368            <class 'sage.rings.function_field.function_field_order.FunctionFieldOrder_rational_with_category'>
    369369        """
    370370        FunctionFieldOrder.__init__(self, function_field)
    371371        PrincipalIdealDomain.__init__(self, self, names = function_field.variable_names(), normalize = False)
  • sage/rings/polynomial/polynomial_element.pyx

    diff --git a/sage/rings/polynomial/polynomial_element.pyx b/sage/rings/polynomial/polynomial_element.pyx
    a b  
    4848import sage.rings.finite_rings.integer_mod_ring
    4949import sage.rings.complex_field
    5050import sage.rings.fraction_field_element
    51 import sage.rings.function_field.function_field
    5251import sage.rings.infinity as infinity
    5352#import sage.misc.misc as misc
    5453from sage.misc.sage_eval import sage_eval
     
    24902489        that this method is called instead to factor univariate
    24912490        polynomials over this ring.  This facility can be used to
    24922491        easily extend polynomial factorization to work over new rings
    2493         you introduce::
     2492        you introduce.::
    24942493
    24952494             sage: R.<x> = QQ[]
    24962495             sage: (x^2 + 1).factor()
    24972496             x^2 + 1
    2498              sage: QQ._factor_univariate_polynomial = lambda f: f.change_ring(CDF).factor()
     2497             sage: QQ._factor_univariate_polynomial = lambda f, proof: f.change_ring(CDF).factor()
    24992498             sage: fz = (x^2 + 1).factor(); fz # random order of factors, with noise
    25002499             (x - ... + I) * (x - I)
    25012500             sage: # Change noisy zero term which affects the order of factors:
     
    27962795
    27972796        R = self.parent().base_ring()
    27982797        if hasattr(R, '_factor_univariate_polynomial'):
    2799             return R._factor_univariate_polynomial(self)
     2798            return R._factor_univariate_polynomial(self,proof=proof)
    28002799
    28012800        G = None
    28022801        ch = R.characteristic()
     
    29582957            else:
    29592958                G = self._pari_with_name('x').factor()
    29602959
    2961         elif sage.rings.function_field.function_field.is_FunctionField(R):
    2962             return R._factor_univariate_polynomial(self, proof=proof)
    29632960
    29642961        #elif padic_field.is_pAdicField(R):
    29652962        #    G = list(self._pari_with_name('x').factorpadic(R.prime(), R.prec()))