Ticket #9054: trac_9054-doctest.patch

File trac_9054-doctest.patch, 2.8 KB (added by mderickx, 7 years ago)

Aplies to sage 4.4.4 after 1-12 patch and it also needs the #9054 patch trac_9094-sqrt-mderickx.patch

  • sage/categories/all.py

    # HG changeset patch
    # User Maarten Derickx <m.derickx.student@gmail.com>
    # Date 1279364025 -7200
    # Node ID 34508590063dc7103ae515af67e6e8bef2263580
    # Parent  45cb12f71be4aa5caefdf85a719c514fb680c0d4
    This fixes all of the doctest failures in 9054. Depends on 9094
    
    diff -r 45cb12f71be4 -r 34508590063d sage/categories/all.py
    a b  
    4343from quotient_fields import QuotientFields
    4444from finite_fields import FiniteFields
    4545from number_fields import NumberFields
     46from function_fields import FunctionFields
    4647
    4748# modules
    4849from left_modules import LeftModules
  • sage/matrix/matrix2.pyx

    diff -r 45cb12f71be4 -r 34508590063d sage/matrix/matrix2.pyx
    a b  
    42024202            sage: C.echelon_form()
    42034203            Traceback (most recent call last):
    42044204            ...
    4205             NotImplementedError: Echelon form not implemented over 'Univariate Polynomial Ring in x over Integer Ring'.
     4205            NotImplementedError: Ideal Ideal (2, x + 1) of Univariate Polynomial Ring in x over Integer Ring not principal
     4206            Echelon form not implemented over 'Univariate Polynomial Ring in x over Integer Ring'.
    42064207            sage: C = matrix(3,[2,x,x^2,x+1,3-x,-1,3,2,1/2])
    42074208            sage: C.echelon_form()
    42084209            [                               2                                x                              x^2]
  • sage/modules/free_module.py

    diff -r 45cb12f71be4 -r 34508590063d sage/modules/free_module.py
    a b  
    48064806        if len(B) == 0:
    48074807            return 1
    48084808        d = B[0].denominator()
     4809        if type(d) == int:
     4810            d = sage.rings.integer.Integer(d)
    48094811        for x in B[1:]:
    48104812            d = d.lcm(x.denominator())
    48114813        return d
  • sage/rings/fraction_field_element.pyx

    diff -r 45cb12f71be4 -r 34508590063d sage/rings/fraction_field_element.pyx
    a b  
    11071107                (<FractionFieldElement>other).__denominator,
    11081108                self.__denominator*(<FractionFieldElement>other).__numerator)
    11091109
    1110     def valuation(self):
     1110    def valuation(self,v=None):
    11111111        """
    11121112        Return the valuation of self, assuming that the numerator and
    11131113        denominator have valuation functions defined on them.
     
    11211121            sage: f.valuation()
    11221122            -1
    11231123        """
    1124         return self.__numerator.valuation() - self.__denominator.valuation()
     1124        return self.__numerator.valuation(v) - self.__denominator.valuation(v)
    11251125
    11261126    def __nonzero__(self):
    11271127        """