Ticket #8786: trac_8786-reviewer.patch

File trac_8786-reviewer.patch, 8.2 KB (added by mvngu, 10 years ago)
  • sage/graphs/digraph.py

    # HG changeset patch
    # User Minh Van Nguyen <nguyenminh2@gmail.com>
    # Date 1272458371 25200
    # Node ID 9188e33e33ed5708fcccff34d429d701dec3baaa
    # Parent  5af3155634cd101e69191b123948f78e6981b931
    #8786: reviewer patch: autogenerated broken links to Wikipedia
    
    diff --git a/sage/graphs/digraph.py b/sage/graphs/digraph.py
    a b  
    1818    Directed graph.
    1919
    2020    A digraph or directed graph is a set of vertices connected by oriented
    21     edges.
    22 
     21    edges. For more information, see the
    2322    `Wikipedia article on digraphs
    24     <http://en.wikipedia.org/wiki/Digraph_%28mathematics%29>`_
     23    <http://en.wikipedia.org/wiki/Digraph_%28mathematics%29>`_.
    2524
    2625    One can very easily create a directed graph in Sage by typing::
    2726   
     
    11001099        The minimum feedback edge set of a digraph is a set of edges
    11011100        that intersect all the circuits of the digraph.
    11021101        Equivalently, a minimum feedback arc set of a DiGraph is a set
    1103         `S` of arcs such that the digraph `G-S` is acyclic.
    1104 
    1105         `Wikipedia article on Feedback arc sets
     1102        `S` of arcs such that the digraph `G-S` is acyclic. For more
     1103        information, see the
     1104        `Wikipedia article on feedback arc sets
    11061105        <http://en.wikipedia.org/wiki/Feedback_arc_set>`_.
    11071106
    11081107        INPUT :
     
    12091208        The minimum feedback vertex set of a digraph is a set of vertices
    12101209        that intersect all the circuits of the digraph.
    12111210        Equivalently, a minimum feedback vertex set of a DiGraph is a set
    1212         `S` of vertices such that the digraph `G-S` is acyclic.
    1213 
    1214         `Wikipedia article on Feedback vertex sets
     1211        `S` of vertices such that the digraph `G-S` is acyclic. For more
     1212        information, see the
     1213        `Wikipedia article on feedback vertex sets
    12151214        <http://en.wikipedia.org/wiki/Feedback_vertex_set>`_.
    12161215
    12171216        INPUT :
  • sage/graphs/digraph_generators.py

    diff --git a/sage/graphs/digraph_generators.py b/sage/graphs/digraph_generators.py
    a b  
    287287        In this digraph, there is an arc `w_1w_2` if `w_2`
    288288        can be obtained from `w_1` by removing the leftmost
    289289        letter and adding a new letter at its right end.
    290 
    291         `Wikipedia article on the De Bruijn graph
    292         <http://en.wikipedia.org/wiki/De_Bruijn_graph>`_
     290        For more information, see the
     291        `Wikipedia article on De Bruijn graph
     292        <http://en.wikipedia.org/wiki/De_Bruijn_graph>`_.
    293293
    294294        INPUT:
    295295
  • sage/graphs/generic_graph.py

    diff --git a/sage/graphs/generic_graph.py b/sage/graphs/generic_graph.py
    a b  
    30273027
    30283028        A minimum edge cut between two vertices `s` and `t` of self
    30293029        is a set `A` of edges of minimum weight such that the graph
    3030         obtained by removing `A` from self is disconnected.
    3031        
     3030        obtained by removing `A` from self is disconnected. For more
     3031        information, see the
    30323032        `Wikipedia article on cuts
    30333033        <http://en.wikipedia.org/wiki/Cut_%28graph_theory%29>`_.
    30343034       
     
    31543154
    31553155        A vertex cut between two non adjacent vertices is a set `U`
    31563156        of vertices of self such that the graph obtained by removing
    3157         `U` from self is disconnected.
    3158 
     3157        `U` from self is disconnected. For more information, see the
    31593158        `Wikipedia article on cuts
    3160         <http://en.wikipedia.org/wiki/Cut_%28graph_theory%29>`_
    3161    
     3159        <http://en.wikipedia.org/wiki/Cut_%28graph_theory%29>`_.
    31623160       
    31633161        INPUT:
    31643162   
     
    32683266        A minimum vertex cover of a graph is a set `S` of
    32693267        vertices such that each edge is incident to at least
    32703268        one element of `S`, and such that `S` is of minimum
    3271         cardinality.
    3272 
     3269        cardinality. For more information, see the
    32733270        `Wikipedia article on vertex cover
    32743271        <http://en.wikipedia.org/wiki/Vertex_cover>`_.
    32753272
     
    33593356        The minimum feedback edge set of a digraph is a set of edges
    33603357        that intersect all the circuits of the digraph.
    33613358        Equivalently, a minimum feedback arc set of a DiGraph is a set
    3362         `S` of arcs such that the digraph `G-S` is acyclic.
    3363 
     3359        `S` of arcs such that the digraph `G-S` is acyclic. For more
     3360        information, see the
    33643361        `Wikipedia article on feedback arc sets
    33653362        <http://en.wikipedia.org/wiki/Feedback_arc_set>`_.
    33663363
     
    34733470        The minimum feedback vertex set of a digraph is a set of vertices
    34743471        that intersect all the circuits of the digraph.
    34753472        Equivalently, a minimum feedback vertex set of a DiGraph is a set
    3476         `S` of vertices such that the digraph `G-S` is acyclic.
    3477 
    3478         `Wikipedia article on Feedback vertex sets
     3473        `S` of vertices such that the digraph `G-S` is acyclic. For more
     3474        information, see the
     3475        `Wikipedia article on feedback vertex sets
    34793476        <http://en.wikipedia.org/wiki/Feedback_vertex_set>`_.
    34803477
    34813478        INPUT :
     
    35813578
    35823579    def max_cut(self,value_only=True,use_edge_labels=True, vertices=False):
    35833580        r"""
    3584         Returns a maximum edge cut of the graph
    3585        
     3581        Returns a maximum edge cut of the graph. For more information, see the
    35863582        `Wikipedia article on cuts
    35873583        <http://en.wikipedia.org/wiki/Cut_%28graph_theory%29>`_.
    35883584       
     
    37183714    def flow(self,x,y,value_only=True,integer=False, use_edge_labels=True,vertex_bound=False):
    37193715        r"""
    37203716        Returns a maximum flow in the graph from ``x`` to ``y``
    3721         represented by an optimal valuation of the edges.
    3722 
    3723         `Wikipedia article on flows
    3724         <http://en.wikipedia.org/wiki/Max_flow_problem>`_.
    3725 
     3717        represented by an optimal valuation of the edges. For more
     3718        information, see the
     3719        `Wikipedia article on maximum flow
     3720        <http://en.wikipedia.org/wiki/Max_flow>`_.
    37263721
    37273722        As an optimization problem, is can be expressed this way :
    37283723
     
    39823977    def matching(self,value_only=False, use_edge_labels=True):
    39833978        r"""
    39843979        Returns a maximum weighted matching of the graph
    3985         represented by the list of its edges.
    3986 
     3980        represented by the list of its edges. For more information, see the
    39873981        `Wikipedia article on matchings
    3988         <http://en.wikipedia.org/wiki/Matching>`_.
    3989 
     3982        <http://en.wikipedia.org/wiki/Matching_%28graph_theory%29>`_.
    39903983
    39913984        Given a graph `G` such that each edge `e` has a weight `w_e`,
    39923985        a maximum matching is a subset `S` of the edges of `G` of
     
    40514044    def dominating_set(self, independent=False, value_only=False,log=0):
    40524045        r"""
    40534046        Returns a minimum dominating set of the graph
    4054         represented by the list of its vertices.
    4055 
     4047        represented by the list of its vertices. For more information, see the
    40564048        `Wikipedia article on dominating sets
    40574049        <http://en.wikipedia.org/wiki/Dominating_set>`_.
    40584050
     
    41384130
    41394131    def edge_connectivity(self,value_only=True,use_edge_labels=False, vertices=False):
    41404132        r"""
    4141         Returns the edge connectivity of the graph
    4142 
     4133        Returns the edge connectivity of the graph. For more information, see
     4134        the
    41434135        `Wikipedia article on connectivity
    41444136        <http://en.wikipedia.org/wiki/Connectivity_(graph_theory)>`_.
    41454137   
     
    43324324
    43334325    def vertex_connectivity(self,value_only=True, sets=False):
    43344326        r"""
    4335         Returns the vertex connectivity of the graph
    4336 
     4327        Returns the vertex connectivity of the graph. For more information,
     4328        see the
    43374329        `Wikipedia article on connectivity
    43384330        <http://en.wikipedia.org/wiki/Connectivity_(graph_theory)>`_.
    4339    
    43404331       
    43414332        INPUT:
    43424333   
     
    82928283        Performs a Lex BFS on the graph.
    82938284   
    82948285        A Lex BFS ( or Lexicographic Breadth-First Search ) is a Breadth
    8295         First Search used for the recognition of Chordal Graphs.
    8296    
     8286        First Search used for the recognition of Chordal Graphs. For more
     8287        information, see the
    82978288        `Wikipedia article on Lex-BFS
    8298         <http://en.wikipedia.org/wiki/Lexicographic_breadth-first_search>`_
     8289        <http://en.wikipedia.org/wiki/Lexicographic_breadth-first_search>`_.
    82998290   
    83008291        INPUT:
    83018292