Ticket #8786: trac_8786-other_fixes.patch

File trac_8786-other_fixes.patch, 7.5 KB (added by ncohen, 10 years ago)
  • sage/graphs/digraph.py

    # HG changeset patch
    # User Nathann Cohen <nathann.cohen@gmail.com>
    # Date 1272441720 -7200
    # Node ID 6ff8b2af66e4189292d67f9e0dbb02197c9d749f
    # Parent  eab8e5597dd105ff5ae2d8ec0df2889d89dcb5fc
    added fixes
    
    diff -r eab8e5597dd1 -r 6ff8b2af66e4 sage/graphs/digraph.py
    a b  
    1818    Directed graph.
    1919
    2020    A digraph or directed graph is a set of vertices connected by oriented
    21     edges (cf. http://en.wikipedia.org/wiki/Digraph_%28mathematics%29 ).
     21    edges.
     22
     23    `Wikipedia article on digraphs
     24    <http://en.wikipedia.org/wiki/Digraph_%28mathematics%29>`_
    2225
    2326    One can very easily create a directed graph in Sage by typing::
    2427   
     
    10991102        Equivalently, a minimum feedback arc set of a DiGraph is a set
    11001103        `S` of arcs such that the digraph `G-S` is acyclic.
    11011104
    1102         For more informations, see
    1103         ( http://en.wikipedia.org/wiki/Feedback_arc_set )
     1105        `Wikipedia article on Feedback arc sets
     1106        <http://en.wikipedia.org/wiki/Feedback_arc_set>`_.
    11041107
    11051108        INPUT :
    11061109
     
    12081211        Equivalently, a minimum feedback vertex set of a DiGraph is a set
    12091212        `S` of vertices such that the digraph `G-S` is acyclic.
    12101213
    1211         For more informations, see
    1212         ( http://en.wikipedia.org/wiki/Feedback_vertex_set )
     1214        `Wikipedia article on Feedback vertex sets
     1215        <http://en.wikipedia.org/wiki/Feedback_vertex_set>`_.
    12131216
    12141217        INPUT :
    12151218
  • sage/graphs/digraph_generators.py

    diff -r eab8e5597dd1 -r 6ff8b2af66e4 sage/graphs/digraph_generators.py
    a b  
    287287        In this digraph, there is an arc `w_1w_2` if `w_2`
    288288        can be obtained from `w_1` by removing the leftmost
    289289        letter and adding a new letter at its right end.
    290         ( more information on this page :
    291         http://en.wikipedia.org/wiki/De_Bruijn_graph )
     290
     291        `Wikipedia article on the De Bruijn graph
     292        <http://en.wikipedia.org/wiki/De_Bruijn_graph>`_
    292293
    293294        INPUT:
    294295
  • sage/graphs/generic_graph.py

    diff -r eab8e5597dd1 -r 6ff8b2af66e4 sage/graphs/generic_graph.py
    a b  
    30283028        A minimum edge cut between two vertices `s` and `t` of self
    30293029        is a set `A` of edges of minimum weight such that the graph
    30303030        obtained by removing `A` from self is disconnected.
    3031         ( cf. http://en.wikipedia.org/wiki/Cut_%28graph_theory%29 )
     3031       
     3032        `Wikipedia article on cuts
     3033        <http://en.wikipedia.org/wiki/Cut_%28graph_theory%29>`_.
    30323034       
    30333035        INPUT:
    30343036
     
    31533155        A vertex cut between two non adjacent vertices is a set `U`
    31543156        of vertices of self such that the graph obtained by removing
    31553157        `U` from self is disconnected.
    3156         ( cf. http://en.wikipedia.org/wiki/Cut_%28graph_theory%29 )
     3158
     3159        `Wikipedia article on cuts
     3160        <http://en.wikipedia.org/wiki/Cut_%28graph_theory%29>`_
    31573161   
    31583162       
    31593163        INPUT:
     
    32653269        vertices such that each edge is incident to at least
    32663270        one element of `S`, and such that `S` is of minimum
    32673271        cardinality.
    3268         ( cf. http://en.wikipedia.org/wiki/Vertex_cover )
     3272
     3273        `Wikipedia article on vertex cover
     3274        <http://en.wikipedia.org/wiki/Vertex_cover>`_.
    32693275
    32703276        Equivalently, a vertex cover is defined as the
    32713277        complement of an independent set.
     
    33533359        Equivalently, a minimum feedback arc set of a DiGraph is a set
    33543360        `S` of arcs such that the digraph `G-S` is acyclic.
    33553361
    3356         For more informations, see
    3357         ( http://en.wikipedia.org/wiki/Feedback_arc_set )
     3362        `Wikipedia article on feedback arc sets
     3363        <http://en.wikipedia.org/wiki/Feedback_arc_set>`_.
    33583364
    33593365        INPUT :
    33603366
     
    34673473        Equivalently, a minimum feedback vertex set of a DiGraph is a set
    34683474        `S` of vertices such that the digraph `G-S` is acyclic.
    34693475
    3470         For more informations, see
    3471         ( http://en.wikipedia.org/wiki/Feedback_vertex_set )
     3476        `Wikipedia article on Feedback vertex sets
     3477        <http://en.wikipedia.org/wiki/Feedback_vertex_set>`_.
    34723478
    34733479        INPUT :
    34743480
     
    35743580    def max_cut(self,value_only=True,use_edge_labels=True, vertices=False):
    35753581        r"""
    35763582        Returns a maximum edge cut of the graph
    3577         ( cf. http://en.wikipedia.org/wiki/Cut_%28graph_theory%29 )
     3583       
     3584        `Wikipedia article on cuts
     3585        <http://en.wikipedia.org/wiki/Cut_%28graph_theory%29>`_.
    35783586       
    35793587        INPUT:
    35803588   
     
    37083716    def flow(self,x,y,value_only=True,integer=False, use_edge_labels=True,vertex_bound=False):
    37093717        r"""
    37103718        Returns a maximum flow in the graph from ``x`` to ``y``
    3711         ( cf. http://en.wikipedia.org/wiki/Max_flow_problem )
    37123719        represented by an optimal valuation of the edges.
    37133720
     3721        `Wikipedia article on flows
     3722        <http://en.wikipedia.org/wiki/Max_flow_problem>`_.
     3723
     3724
    37143725        As an optimization problem, is can be expressed this way :
    37153726
    37163727        .. MATH::
     
    39693980    def matching(self,value_only=False, use_edge_labels=True):
    39703981        r"""
    39713982        Returns a maximum weighted matching of the graph
    3972         ( cf. http://en.wikipedia.org/wiki/Matching )
    39733983        represented by the list of its edges.
    39743984
     3985        `Wikipedia article on matchings
     3986        <http://en.wikipedia.org/wiki/Matching>`_.
     3987
     3988
    39753989        Given a graph `G` such that each edge `e` has a weight `w_e`,
    39763990        a maximum matching is a subset `S` of the edges of `G` of
    39773991        maximum weight such that no two edges of `S` are incident
     
    40354049    def dominating_set(self, independent=False, value_only=False,log=0):
    40364050        r"""
    40374051        Returns a minimum dominating set of the graph
    4038         ( cf. http://en.wikipedia.org/wiki/Dominating_set )
    40394052        represented by the list of its vertices.
    40404053
     4054        `Wikipedia article on dominating sets
     4055        <http://en.wikipedia.org/wiki/Dominating_set>`_.
     4056
    40414057        A minimum dominating set `S` of a graph `G` is
    40424058        a set of its vertices of minimal cardinality such
    40434059        that any vertex of `G` is in `S` or has one of its neighbors
     
    41214137    def edge_connectivity(self,value_only=True,use_edge_labels=False, vertices=False):
    41224138        r"""
    41234139        Returns the edge connectivity of the graph
    4124         ( cf. http://en.wikipedia.org/wiki/Connectivity_(graph_theory) )
     4140
     4141        `Wikipedia article on connectivity
     4142        <http://en.wikipedia.org/wiki/Connectivity_(graph_theory)>`_.
    41254143   
    41264144        INPUT:
    41274145   
     
    43134331    def vertex_connectivity(self,value_only=True, sets=False):
    43144332        r"""
    43154333        Returns the vertex connectivity of the graph
    4316         ( cf. http://en.wikipedia.org/wiki/Connectivity_(graph_theory) )
     4334
     4335        `Wikipedia article on connectivity
     4336        <http://en.wikipedia.org/wiki/Connectivity_(graph_theory)>`_.
    43174337   
    43184338       
    43194339        INPUT:
     
    82728292        A Lex BFS ( or Lexicographic Breadth-First Search ) is a Breadth
    82738293        First Search used for the recognition of Chordal Graphs.
    82748294   
    8275         More information on this page :
    8276         http://en.wikipedia.org/wiki/Lexicographic_breadth-first_search
     8295        `Wikipedia article on Lex-BFS
     8296        <http://en.wikipedia.org/wiki/Lexicographic_breadth-first_search>`_
    82778297   
    82788298        INPUT:
    82798299