Ticket #8786: trac_8786-other_fixes.2.patch

File trac_8786-other_fixes.2.patch, 7.4 KB (added by mvngu, 11 years ago)
  • sage/graphs/digraph.py

    # HG changeset patch
    # User Nathann Cohen <nathann.cohen@gmail.com>
    # Date 1272441720 -7200
    # Node ID 5af3155634cd101e69191b123948f78e6981b931
    # Parent  4a624097a97bdd20e5bcc484ae37bc9425adbb57
    #8786: added fixes: autogenerated broken links to Wikipedia
    
    diff --git a/sage/graphs/digraph.py b/sage/graphs/digraph.py
    a b  
    1818    Directed graph.
    1919
    2020    A digraph or directed graph is a set of vertices connected by oriented
    21     edges (cf. http://en.wikipedia.org/wiki/Digraph_%28mathematics%29 ).
     21    edges.
     22
     23    `Wikipedia article on digraphs
     24    <http://en.wikipedia.org/wiki/Digraph_%28mathematics%29>`_
    2225
    2326    One can very easily create a directed graph in Sage by typing::
    2427   
     
    10991102        Equivalently, a minimum feedback arc set of a DiGraph is a set
    11001103        `S` of arcs such that the digraph `G-S` is acyclic.
    11011104
    1102         For more informations, see
    1103         ( http://en.wikipedia.org/wiki/Feedback_arc_set )
     1105        `Wikipedia article on Feedback arc sets
     1106        <http://en.wikipedia.org/wiki/Feedback_arc_set>`_.
    11041107
    11051108        INPUT :
    11061109
     
    12081211        Equivalently, a minimum feedback vertex set of a DiGraph is a set
    12091212        `S` of vertices such that the digraph `G-S` is acyclic.
    12101213
    1211         For more informations, see
    1212         ( http://en.wikipedia.org/wiki/Feedback_vertex_set )
     1214        `Wikipedia article on Feedback vertex sets
     1215        <http://en.wikipedia.org/wiki/Feedback_vertex_set>`_.
    12131216
    12141217        INPUT :
    12151218
  • sage/graphs/digraph_generators.py

    diff --git a/sage/graphs/digraph_generators.py b/sage/graphs/digraph_generators.py
    a b  
    287287        In this digraph, there is an arc `w_1w_2` if `w_2`
    288288        can be obtained from `w_1` by removing the leftmost
    289289        letter and adding a new letter at its right end.
    290         ( more information on this page :
    291         http://en.wikipedia.org/wiki/De_Bruijn_graph )
     290
     291        `Wikipedia article on the De Bruijn graph
     292        <http://en.wikipedia.org/wiki/De_Bruijn_graph>`_
    292293
    293294        INPUT:
    294295
  • sage/graphs/generic_graph.py

    diff --git a/sage/graphs/generic_graph.py b/sage/graphs/generic_graph.py
    a b  
    30283028        A minimum edge cut between two vertices `s` and `t` of self
    30293029        is a set `A` of edges of minimum weight such that the graph
    30303030        obtained by removing `A` from self is disconnected.
    3031         ( cf. http://en.wikipedia.org/wiki/Cut_%28graph_theory%29 )
     3031       
     3032        `Wikipedia article on cuts
     3033        <http://en.wikipedia.org/wiki/Cut_%28graph_theory%29>`_.
    30323034       
    30333035        INPUT:
    30343036
     
    31533155        A vertex cut between two non adjacent vertices is a set `U`
    31543156        of vertices of self such that the graph obtained by removing
    31553157        `U` from self is disconnected.
    3156         ( cf. http://en.wikipedia.org/wiki/Cut_%28graph_theory%29 )
     3158
     3159        `Wikipedia article on cuts
     3160        <http://en.wikipedia.org/wiki/Cut_%28graph_theory%29>`_
    31573161   
    31583162       
    31593163        INPUT:
     
    32653269        vertices such that each edge is incident to at least
    32663270        one element of `S`, and such that `S` is of minimum
    32673271        cardinality.
    3268         ( cf. http://en.wikipedia.org/wiki/Vertex_cover )
     3272
     3273        `Wikipedia article on vertex cover
     3274        <http://en.wikipedia.org/wiki/Vertex_cover>`_.
    32693275
    32703276        Equivalently, a vertex cover is defined as the
    32713277        complement of an independent set.
     
    33553361        Equivalently, a minimum feedback arc set of a DiGraph is a set
    33563362        `S` of arcs such that the digraph `G-S` is acyclic.
    33573363
    3358         For more informations, see
    3359         ( http://en.wikipedia.org/wiki/Feedback_arc_set )
     3364        `Wikipedia article on feedback arc sets
     3365        <http://en.wikipedia.org/wiki/Feedback_arc_set>`_.
    33603366
    33613367        INPUT :
    33623368
     
    34693475        Equivalently, a minimum feedback vertex set of a DiGraph is a set
    34703476        `S` of vertices such that the digraph `G-S` is acyclic.
    34713477
    3472         For more informations, see
    3473         ( http://en.wikipedia.org/wiki/Feedback_vertex_set )
     3478        `Wikipedia article on Feedback vertex sets
     3479        <http://en.wikipedia.org/wiki/Feedback_vertex_set>`_.
    34743480
    34753481        INPUT :
    34763482
     
    35763582    def max_cut(self,value_only=True,use_edge_labels=True, vertices=False):
    35773583        r"""
    35783584        Returns a maximum edge cut of the graph
    3579         ( cf. http://en.wikipedia.org/wiki/Cut_%28graph_theory%29 )
     3585       
     3586        `Wikipedia article on cuts
     3587        <http://en.wikipedia.org/wiki/Cut_%28graph_theory%29>`_.
    35803588       
    35813589        INPUT:
    35823590   
     
    37103718    def flow(self,x,y,value_only=True,integer=False, use_edge_labels=True,vertex_bound=False):
    37113719        r"""
    37123720        Returns a maximum flow in the graph from ``x`` to ``y``
    3713         ( cf. http://en.wikipedia.org/wiki/Max_flow_problem )
    37143721        represented by an optimal valuation of the edges.
    37153722
     3723        `Wikipedia article on flows
     3724        <http://en.wikipedia.org/wiki/Max_flow_problem>`_.
     3725
     3726
    37163727        As an optimization problem, is can be expressed this way :
    37173728
    37183729        .. MATH::
     
    39713982    def matching(self,value_only=False, use_edge_labels=True):
    39723983        r"""
    39733984        Returns a maximum weighted matching of the graph
    3974         ( cf. http://en.wikipedia.org/wiki/Matching )
    39753985        represented by the list of its edges.
    39763986
     3987        `Wikipedia article on matchings
     3988        <http://en.wikipedia.org/wiki/Matching>`_.
     3989
     3990
    39773991        Given a graph `G` such that each edge `e` has a weight `w_e`,
    39783992        a maximum matching is a subset `S` of the edges of `G` of
    39793993        maximum weight such that no two edges of `S` are incident
     
    40374051    def dominating_set(self, independent=False, value_only=False,log=0):
    40384052        r"""
    40394053        Returns a minimum dominating set of the graph
    4040         ( cf. http://en.wikipedia.org/wiki/Dominating_set )
    40414054        represented by the list of its vertices.
    40424055
     4056        `Wikipedia article on dominating sets
     4057        <http://en.wikipedia.org/wiki/Dominating_set>`_.
     4058
    40434059        A minimum dominating set `S` of a graph `G` is
    40444060        a set of its vertices of minimal cardinality such
    40454061        that any vertex of `G` is in `S` or has one of its neighbors
     
    41234139    def edge_connectivity(self,value_only=True,use_edge_labels=False, vertices=False):
    41244140        r"""
    41254141        Returns the edge connectivity of the graph
    4126         ( cf. http://en.wikipedia.org/wiki/Connectivity_(graph_theory) )
     4142
     4143        `Wikipedia article on connectivity
     4144        <http://en.wikipedia.org/wiki/Connectivity_(graph_theory)>`_.
    41274145   
    41284146        INPUT:
    41294147   
     
    43154333    def vertex_connectivity(self,value_only=True, sets=False):
    43164334        r"""
    43174335        Returns the vertex connectivity of the graph
    4318         ( cf. http://en.wikipedia.org/wiki/Connectivity_(graph_theory) )
     4336
     4337        `Wikipedia article on connectivity
     4338        <http://en.wikipedia.org/wiki/Connectivity_(graph_theory)>`_.
    43194339   
    43204340       
    43214341        INPUT:
     
    82748294        A Lex BFS ( or Lexicographic Breadth-First Search ) is a Breadth
    82758295        First Search used for the recognition of Chordal Graphs.
    82768296   
    8277         More information on this page :
    8278         http://en.wikipedia.org/wiki/Lexicographic_breadth-first_search
     8297        `Wikipedia article on Lex-BFS
     8298        <http://en.wikipedia.org/wiki/Lexicographic_breadth-first_search>`_
    82798299   
    82808300        INPUT:
    82818301