Ticket #8446: trac_8446_microfix.patch

File trac_8446_microfix.patch, 1.2 KB (added by David Loeffler, 13 years ago)

apply over previous patch

  • sage/rings/number_field/number_field.py

    # HG changeset patch
    # User David Loeffler <d.loeffler.01@cantab.net>
    # Date 1271755093 -3600
    # Node ID 439f4d254308d1e5c80c91f8bfc96761434e4f80
    # Parent  c95bc6178e772917d806bb60e0617bcfd28448c8
    #8446: reviewer fixes
    
    diff -r c95bc6178e77 -r 439f4d254308 sage/rings/number_field/number_field.py
    a b  
    26812681            sage: K.<a> = NumberField(x^2+5)
    26822682            sage: K._S_class_group_and_units(())
    26832683            ([-1], [(Fractional ideal (2, a + 1), 2, 2)])
    2684        
     2684           
     2685            sage: K.<a> = NumberField(polygen(QQ))
     2686            sage: K._S_class_group_and_units( (K.ideal(5),) )
     2687            ([5, -1], [])
    26852688        """
    26862689        from sage.interfaces.gp import gp
    26872690        from sage.rings.number_field.number_field_ideal import \
     
    27302733        return units, clgp_gens
    27312734
    27322735    def selmer_group(self, S, m, proof=True):
    2733         """
     2736        r"""
    27342737        Compute the Selmer group `K(S,m)`, which is defined to be the subgroup of
    27352738        `K^\times/(K^\times)^m` consisting of elements `a` such that
    27362739        `K(\sqrt[m]{a})/K` is unramified at all primes of `K` lying above a