# HG changeset patch
# User J. H. Palmieri <palmieri@math.washington.edu>
# Date 1326350430 28800
# Node ID 5d72b52fa3c5d8817483402f209cbb2891d1f46b
# Parent 7ea5f48e69aad84d25f67b976bf28ea4e8f5c473
#8046: clean up a few docstrings.
diff git a/sage/matrix/matrix_double_dense.pyx b/sage/matrix/matrix_double_dense.pyx
a

b

cdef class Matrix_double_dense(matrix_de 
574  574  INPUT: 
575  575  
576  576   ``p``  default: 'frob'  controls which norm is used 
577   to compute the condition number, allowable values are 
578   'frob' (for the Frobenius norm), integers 2, 1, 1, 2, 
579   positive and negative infinity. See output discussion 
580   for specifics. 
 577  to compute the condition number, allowable values are 
 578  'frob' (for the Frobenius norm), integers 2, 1, 1, 2, 
 579  positive and negative infinity. See output discussion 
 580  for specifics. 
581  581  
582  582  OUTPUT: 
583  583  
… 
… 
cdef class Matrix_double_dense(matrix_de 
1567  1567  
1568  1568  INPUT: 
1569  1569  
1570    self  an invertible matrix 
1571    b  a vector 
 1570   self  an invertible matrix 
 1571   b  a vector 
1572  1572  
1573  1573  .. NOTE:: 
1574  1574  
… 
… 
cdef class Matrix_double_dense(matrix_de 
2036  2036  
2037  2037  INPUT: 
2038  2038  
2039   A  a matrix 
 2039   A  a matrix 
2040  2040  
2041  2041  OUTPUT: 
2042  2042  
2043   U, S, V  immutable matrices such that $A = U*S*V.conj().transpose()$ 
2044   where U and V are orthogonal and S is zero off of the diagonal. 
 2043   U, S, V  immutable matrices such that $A = U*S*V.conj().transpose()$ 
 2044  where U and V are orthogonal and S is zero off of the diagonal. 
2045  2045  
2046  2046  Note that if self is mbyn, then the dimensions of the 
2047  2047  matrices that this returns are (m,m), (m,n), and (n, n). 
… 
… 
cdef class Matrix_double_dense(matrix_de 
2176  2176  
2177  2177  INPUT: 
2178  2178  
2179   self  a real matrix A 
 2179   self  a real matrix A 
2180  2180  
2181  2181  OUTPUT: 
2182  2182  
2183   Q, R  immutable matrices such that A = Q*R such that the columns of Q are 
2184   orthogonal (i.e., $Q^t Q = I$), and R is upper triangular. 
 2183   Q, R  immutable matrices such that A = Q*R such that the columns of Q are 
 2184  orthogonal (i.e., $Q^t Q = I$), and R is upper triangular. 
2185  2185  
2186  2186  EXAMPLES:: 
2187  2187  
… 
… 
cdef class Matrix_double_dense(matrix_de 
2536  2536  
2537  2537  AUTHOR: 
2538  2538  
2539    Rob Beezer (20110330) 
 2539   Rob Beezer (20110330) 
2540  2540  """ 
2541  2541  import sage.rings.complex_double 
2542  2542  global numpy 
… 
… 
cdef class Matrix_double_dense(matrix_de 
2827  2827  
2828  2828  AUTHOR: 
2829  2829  
2830    Rob Beezer (20110331) 
 2830   Rob Beezer (20110331) 
2831  2831  """ 
2832  2832  global scipy 
2833  2833  from sage.rings.real_double import RDF 
… 
… 
cdef class Matrix_double_dense(matrix_de 
3045  3045  r""" 
3046  3046  Calculate the exponential of this matrix X, which is the matrix 
3047  3047  
3048   e^X = sum_{k=0}^{infty} frac{X^k}{k!}. 
 3048  .. math:: 
 3049  
 3050  e^X = \sum_{k=0}^{\infty} \frac{X^k}{k!}. 
3049  3051  
3050  3052  INPUT: 
3051  3053  
3052    algorithm  'pade', 'eig', or 'taylor'; the algorithm used to 
3053   compute the exponential. 
3054   
3055    order  for Pade or Taylor series algorithms, order is the 
3056   order of the Pade approximation or the order of the Taylor 
3057   series used. The current defaults (from scipy) are 7 for 
3058   'pade' and 20 for 'taylor'. 
 3054   algorithm  'pade', 'eig', or 'taylor'; the algorithm used to 
 3055  compute the exponential. 
 3056  
 3057   order  for Pade or Taylor series algorithms, order is the 
 3058  order of the Pade approximation or the order of the Taylor 
 3059  series used. The current defaults (from scipy) are 7 for 
 3060  'pade' and 20 for 'taylor'. 
3059  3061  
3060  3062  EXAMPLES:: 
3061  3063  