Ticket #8046: trac_8046-ref.patch

File trac_8046-ref.patch, 3.9 KB (added by jhpalmieri, 9 years ago)
  • sage/matrix/matrix_double_dense.pyx

    # HG changeset patch
    # User J. H. Palmieri <palmieri@math.washington.edu>
    # Date 1326350430 28800
    # Node ID 5d72b52fa3c5d8817483402f209cbb2891d1f46b
    # Parent  7ea5f48e69aad84d25f67b976bf28ea4e8f5c473
    #8046: clean up a few docstrings.
    
    diff --git a/sage/matrix/matrix_double_dense.pyx b/sage/matrix/matrix_double_dense.pyx
    a b cdef class Matrix_double_dense(matrix_de 
    574574        INPUT:
    575575
    576576        - ``p`` - default: 'frob' - controls which norm is used
    577         to compute the condition number, allowable values are
    578         'frob' (for the Frobenius norm), integers -2, -1, 1, 2,
    579         positive and negative infinity. See output discussion
    580         for specifics.
     577          to compute the condition number, allowable values are
     578          'frob' (for the Frobenius norm), integers -2, -1, 1, 2,
     579          positive and negative infinity. See output discussion
     580          for specifics.
    581581
    582582        OUTPUT:
    583583
    cdef class Matrix_double_dense(matrix_de 
    15671567
    15681568        INPUT:
    15691569
    1570             - self -- an invertible matrix
    1571             - b -- a vector
     1570        - self -- an invertible matrix
     1571        - b -- a vector
    15721572       
    15731573        .. NOTE::
    15741574
    cdef class Matrix_double_dense(matrix_de 
    20362036
    20372037        INPUT:
    20382038
    2039             A -- a matrix
     2039        - A -- a matrix
    20402040           
    20412041        OUTPUT:
    20422042
    2043             U, S, V -- immutable matrices such that $A = U*S*V.conj().transpose()$
    2044                        where U and V are orthogonal and S is zero off of the diagonal.
     2043        - U, S, V -- immutable matrices such that $A = U*S*V.conj().transpose()$
     2044          where U and V are orthogonal and S is zero off of the diagonal.
    20452045                       
    20462046        Note that if self is m-by-n, then the dimensions of the
    20472047        matrices that this returns are (m,m), (m,n), and (n, n).
    cdef class Matrix_double_dense(matrix_de 
    21762176
    21772177        INPUT:
    21782178
    2179           self -- a real matrix A
     2179        - self -- a real matrix A
    21802180
    21812181        OUTPUT:
    21822182
    2183           Q, R -- immutable matrices such that A = Q*R such that the columns of Q are
    2184                    orthogonal (i.e., $Q^t Q = I$), and R is upper triangular.
     2183        - Q, R -- immutable matrices such that A = Q*R such that the columns of Q are
     2184          orthogonal (i.e., $Q^t Q = I$), and R is upper triangular.
    21852185
    21862186        EXAMPLES::
    21872187       
    cdef class Matrix_double_dense(matrix_de 
    25362536
    25372537        AUTHOR:
    25382538
    2539          - Rob Beezer (2011-03-30)
     2539        - Rob Beezer (2011-03-30)
    25402540        """
    25412541        import sage.rings.complex_double
    25422542        global numpy
    cdef class Matrix_double_dense(matrix_de 
    28272827
    28282828        AUTHOR:
    28292829
    2830             - Rob Beezer (2011-03-31)
     2830        - Rob Beezer (2011-03-31)
    28312831        """
    28322832        global scipy
    28332833        from sage.rings.real_double import RDF
    cdef class Matrix_double_dense(matrix_de 
    30453045        r"""
    30463046        Calculate the exponential of this matrix X, which is the matrix
    30473047
    3048         e^X = sum_{k=0}^{infty} frac{X^k}{k!}.
     3048        .. math::
     3049
     3050           e^X = \sum_{k=0}^{\infty} \frac{X^k}{k!}.
    30493051
    30503052        INPUT:
    30513053
    3052             - algorithm -- 'pade', 'eig', or 'taylor'; the algorithm used to
    3053               compute the exponential.
    3054 
    3055             - order -- for Pade or Taylor series algorithms, order is the
    3056               order of the Pade approximation or the order of the Taylor
    3057               series used.  The current defaults (from scipy) are 7 for
    3058               'pade' and 20 for 'taylor'.
     3054        - algorithm -- 'pade', 'eig', or 'taylor'; the algorithm used to
     3055          compute the exponential.
     3056
     3057        - order -- for Pade or Taylor series algorithms, order is the
     3058          order of the Pade approximation or the order of the Taylor
     3059          series used.  The current defaults (from scipy) are 7 for
     3060          'pade' and 20 for 'taylor'.
    30593061
    30603062        EXAMPLES::
    30613063