# HG changeset patch
# User William Stein <wstein@gmail.com>
# Date 1248150317 25200
# Node ID 1f180754986d047ae5bc6742150087c3b47d9850
# Parent 8888dde49957829af7545115defd0b4d13ccade1
trac #6071  referee followup patch
diff r 8888dde49957 r 1f180754986d sage/modular/modform/ambient.py
a

b


345  345  
346  346  def module(self): 
347  347  """ 
348   Return the underlying free module corresponding to this space of 
349   modular forms. This is a free module (viewed as a tuple space) of 
350   the same dimension as this space over the same base ring. 
 348  Return the underlying free module corresponding to this space 
 349  of modular forms. 
 350  
 351  If the dimension of self can be computed reasonably quickly, 
 352  then this function returns a free module (viewed as a tuple 
 353  space) of the same dimension as self over the same base ring. 
 354  Otherwise, the dimension of self.module() may be smaller. For 
 355  example, in the case of weight 1 forms, in some cases the 
 356  dimension can't easily be computed so self.module() is of 
 357  smaller dimension. 
351  358  
352  359  EXAMPLES:: 
353  360  
… 
… 

357  364  sage: ModularForms(Gamma1(13),4, GF(49,'b')).free_module() 
358  365  Vector space of dimension 27 over Finite Field in b of size 7^2 
359  366  
 367  Note that in the following example the dimension can't be 
 368  (quickly) computed, so M.module() returns a space of different 
 369  dimension than M:: 
 370  
360  371  sage: M = ModularForms(Gamma1(57), 1); M 
361  372  Modular Forms space of dimension (unknown) for Congruence ... 
362   sage: M.free_module() 
 373  sage: M.module() 
363  374  Vector space of dimension 36 over Rational Field 
364  375  sage: M.basis() 
365  376  Traceback (most recent call last): 