Ticket #6040: patch-5__QF_reviewer__4.0.alpha0.patch

File patch-5__QF_reviewer__4.0.alpha0.patch, 4.4 KB (added by tornaria, 12 years ago)

fix doctests for 4.0.alpha0

  • sage/quadratic_forms/quadratic_form__local_field_invariants.py

    # HG changeset patch
    # User Gonzalo Tornaría <tornaria@math.utexas.edu>
    # Date 1242624121 25200
    # Node ID 2bd1eb1d392dbb8f9c0e5b652c0b43623244d7b8
    # Parent  156fd64bf4b7a1a92b7e8eb181d7d15909ebe67a
    #6040: QF -- fix doctests for 4.0.alpha0
    
    diff -r 156fd64bf4b7 -r 2bd1eb1d392d sage/quadratic_forms/quadratic_form__local_field_invariants.py
    a b  
    439439        sage: Q.is_anisotropic(5)
    440440        False
    441441
    442         sage: [DiagonalQuadraticForm(ZZ, [1, -quadratic_nonresidue(p)]).is_anisotropic(p)  for p in prime_range(3, 30)]
     442        sage: [DiagonalQuadraticForm(ZZ, [1, -least_quadratic_nonresidue(p)]).is_anisotropic(p)  for p in prime_range(3, 30)]
    443443        [True, True, True, True, True, True, True, True, True]
    444444
    445         sage: [DiagonalQuadraticForm(ZZ, [1, -quadratic_nonresidue(p), p, -p*quadratic_nonresidue(p)]).is_anisotropic(p)  for p in prime_range(3, 30)]
     445        sage: [DiagonalQuadraticForm(ZZ, [1, -least_quadratic_nonresidue(p), p, -p*least_quadratic_nonresidue(p)]).is_anisotropic(p)  for p in prime_range(3, 30)]
    446446        [True, True, True, True, True, True, True, True, True]
    447447
    448448
     
    497497        sage: Q.is_isotropic(5)
    498498        True
    499499
    500         sage: [DiagonalQuadraticForm(ZZ, [1, -quadratic_nonresidue(p)]).is_isotropic(p)  for p in prime_range(3, 30)]
     500        sage: [DiagonalQuadraticForm(ZZ, [1, -least_quadratic_nonresidue(p)]).is_isotropic(p)  for p in prime_range(3, 30)]
    501501        [False, False, False, False, False, False, False, False, False]
    502502
    503         sage: [DiagonalQuadraticForm(ZZ, [1, -quadratic_nonresidue(p), p, -p*quadratic_nonresidue(p)]).is_isotropic(p)  for p in prime_range(3, 30)]
     503        sage: [DiagonalQuadraticForm(ZZ, [1, -least_quadratic_nonresidue(p), p, -p*least_quadratic_nonresidue(p)]).is_isotropic(p)  for p in prime_range(3, 30)]
    504504        [False, False, False, False, False, False, False, False, False]
    505505
    506506    """
  • sage/quadratic_forms/quadratic_form__local_representation_conditions.py

    diff -r 156fd64bf4b7 -r 2bd1eb1d392d sage/quadratic_forms/quadratic_form__local_representation_conditions.py
    a b  
    471471            False
    472472
    473473            sage: Q = DiagonalQuadraticForm(ZZ, [1,1,1,1,-1])
    474             sage: C = QuadraticFormLocalRepresentationConditions(Q)
    475             sage: C.is_universal_at_all_places()
     474            sage: C = QuadraticFormLocalRepresentationConditions(Q)     # long time (8.5 s)
     475            sage: C.is_universal_at_all_places()                        # long time
    476476            True
    477477        """
    478478        ## Check if dim <= 2.
     
    825825        False
    826826
    827827        sage: Q = DiagonalQuadraticForm(ZZ, [1,1,1,1,-1])
    828         sage: Q.is_locally_universal_at_all_places()
     828        sage: Q.is_locally_universal_at_all_places()        # long time (8.5 s)
    829829        True
    830830
    831831    """
     
    862862        False
    863863
    864864        sage: Q = DiagonalQuadraticForm(ZZ, [1,1,1,1,-1])
    865         sage: Q.is_locally_represented_number_at_place(7, infinity)
     865        sage: Q.is_locally_represented_number_at_place(7, infinity)     # long time (8.5 s)
    866866        True
    867         sage: Q.is_locally_represented_number_at_place(7, 2)
     867        sage: Q.is_locally_represented_number_at_place(7, 2)            # long time
    868868        True
    869         sage: Q.is_locally_represented_number_at_place(7, 3)
     869        sage: Q.is_locally_represented_number_at_place(7, 3)            # long time
    870870        True
    871         sage: Q.is_locally_represented_number_at_place(7, 5)
     871        sage: Q.is_locally_represented_number_at_place(7, 5)            # long time
    872872        True
    873873
    874874    """
  • sage/quadratic_forms/quadratic_form__mass__Conway_Sloane_masses.py

    diff -r 156fd64bf4b7 -r 2bd1eb1d392d sage/quadratic_forms/quadratic_form__mass__Conway_Sloane_masses.py
    a b  
    393393        a rational number > 0
    394394
    395395    EXAMPLES:
    396         sage:  sage: Q = DiagonalQuadraticForm(ZZ, range(1,6))   
     396        sage: Q = DiagonalQuadraticForm(ZZ, range(1,6))   
    397397        sage: Q.conway_diagonal_factor(3)
    398398        81/256       
    399399