# HG changeset patch
# User Robert L. Miller <rlm@rlmiller.org>
# Date 1248370612 25200
# Node ID ce14c6b781cdd806f3016317c79e4ac17d9b2559
# Parent d53ecc5ac0e1c894334339615a56bafd9cfcfc52
Doctest fixes
diff -r d53ecc5ac0e1 -r ce14c6b781cd sage/graphs/graph_coloring.py
a
|
b
|
|
221 | 221 | elif G.is_bipartite(): #can we do it in linear time? |
222 | 222 | return 2 |
223 | 223 | else: #counting cliques is faster than our brute-force method... |
224 | | m = max([len(c) for c in G.cliques()]) |
| 224 | m = G.clique_number() |
225 | 225 | if m >= o-1: #marginal improvement... if there's an o-1 clique and not an o clique, don't waste our time coloring. |
226 | 226 | return m |
227 | 227 | for n in range(m,o+1): |
diff -r d53ecc5ac0e1 -r ce14c6b781cd sage/groups/perm_gps/partn_ref/refinement_graphs.pyx
a
|
b
|
|
315 | 315 | |
316 | 316 | This example is due to Chris Godsil: |
317 | 317 | sage: HS = graphs.HoffmanSingletonGraph() |
318 | | sage: clqs = (HS.complement()).cliques() |
319 | | sage: alqs = [Set(c) for c in clqs if len(c) == 15] |
| 318 | sage: alqs = [Set(c) for c in (HS.complement()).cliques_maximum()] |
320 | 319 | sage: Y = Graph([alqs, lambda s,t: len(s.intersection(t))==0]) |
321 | 320 | sage: Y0,Y1 = Y.connected_components_subgraphs() |
322 | 321 | sage: st(Y0, [Y0.vertices()])[1] == st(Y1, [Y1.vertices()])[1] |