# Ticket #5793: trac_5793-part-6.patch

File trac_5793-part-6.patch, 1.6 KB (added by Robert Miller, 14 years ago)

Apply on top of flattened patch

• ## sage/graphs/graph_coloring.py

# HG changeset patch
# User Robert L. Miller <rlm@rlmiller.org>
# Date 1248370612 25200
# Node ID ce14c6b781cdd806f3016317c79e4ac17d9b2559
# Parent  d53ecc5ac0e1c894334339615a56bafd9cfcfc52
Doctest fixes

diff -r d53ecc5ac0e1 -r ce14c6b781cd sage/graphs/graph_coloring.py
 a elif G.is_bipartite(): #can we do it in linear time? return 2 else: #counting cliques is faster than our brute-force method... m = max([len(c) for c in G.cliques()]) m = G.clique_number() if m >= o-1: #marginal improvement... if there's an o-1 clique and not an o clique, don't waste our time coloring. return m for n in range(m,o+1):
• ## sage/groups/perm_gps/partn_ref/refinement_graphs.pyx

diff -r d53ecc5ac0e1 -r ce14c6b781cd sage/groups/perm_gps/partn_ref/refinement_graphs.pyx
 a This example is due to Chris Godsil: sage: HS = graphs.HoffmanSingletonGraph() sage: clqs = (HS.complement()).cliques() sage: alqs = [Set(c) for c in clqs if len(c) == 15] sage: alqs = [Set(c) for c in (HS.complement()).cliques_maximum()] sage: Y = Graph([alqs, lambda s,t: len(s.intersection(t))==0]) sage: Y0,Y1 = Y.connected_components_subgraphs() sage: st(Y0, [Y0.vertices()])[1] == st(Y1, [Y1.vertices()])[1]