Ticket #5457: 5457_long_time.patch

File 5457_long_time.patch, 11.1 KB (added by jdemeyer, 8 years ago)

Additional patch

  • sage/combinat/sf/hall_littlewood.py

    # HG changeset patch
    # User Jeroen Demeyer <jdemeyer@cage.ugent.be>
    # Date 1346504592 -7200
    # Node ID 5a8015a6d22a9e3160bed255b3a8d8653f3832c3
    # Parent  e746705c9c2e6bbb02d23da39bbd2fe8c7e70220
    Add # long time where needed
    
    diff --git a/sage/combinat/sf/hall_littlewood.py b/sage/combinat/sf/hall_littlewood.py
    a b  
    10101010
    10111011            sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
    10121012            sage: Q = Sym.hall_littlewood().Q()
    1013             sage: TestSuite(Q).run(skip=['_test_associativity', '_test_distributivity', '_test_prod']) # products are too expensive
    1014             sage: TestSuite(Q).run(elements = [Q.t*Q[1,1]+Q[2], Q[1]+(1+Q.t)*Q[1,1]])
     1013            sage: TestSuite(Q).run(skip=['_test_associativity', '_test_distributivity', '_test_prod']) # products are too expensive, long time (3s on sage.math, 2012)
     1014            sage: TestSuite(Q).run(elements = [Q.t*Q[1,1]+Q[2], Q[1]+(1+Q.t)*Q[1,1]])  # long time (depends on previous)
    10151015
    10161016            sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
    10171017            sage: HLP = Sym.hall_littlewood().P()
     
    11001100
    11011101            sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
    11021102            sage: Qp = Sym.hall_littlewood().Q()
    1103             sage: TestSuite(Qp).run(skip=['_test_passociativity', '_test_distributivity', '_test_prod']) # products are too expensive
    1104             sage: TestSuite(Qp).run(elements = [Qp.t*Qp[1,1]+Qp[2], Qp[1]+(1+Qp.t)*Qp[1,1]])
     1103            sage: TestSuite(Qp).run(skip=['_test_passociativity', '_test_distributivity', '_test_prod']) # products are too expensive, long time (3s on sage.math, 2012)
     1104            sage: TestSuite(Qp).run(elements = [Qp.t*Qp[1,1]+Qp[2], Qp[1]+(1+Qp.t)*Qp[1,1]])  # long time (depends on previous)
    11051105
    11061106            sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
    11071107            sage: HLP = Sym.hall_littlewood().P()
  • sage/combinat/sf/jack.py

    diff --git a/sage/combinat/sf/jack.py b/sage/combinat/sf/jack.py
    a b  
    529529        Jack polynomials in the J basis with t=1 over Rational Field
    530530        sage: s = SymmetricFunctions(QQ).s()
    531531        sage: p = Partition([3,2,1,1])
    532         sage: s(J(p)) == p.hook_product(1)*s(p)
     532        sage: s(J(p)) == p.hook_product(1)*s(p)  # long time (4s on sage.math, 2012)
    533533        True
    534534
    535535    At `t = 2`, the Jack polynomials on the J basis are scalar multiples
     
    12591259
    12601260            sage: J = SymmetricFunctions(FractionField(QQ['t'])).jack().J()
    12611261            sage: TestSuite(J).run(skip=['_test_associativity', '_test_distributivity', '_test_prod']) # products are too expensive
    1262             sage: TestSuite(J).run(elements = [J.t*J[1,1]+J[2], J[1]+(1+J.t)*J[1,1]])
     1262            sage: TestSuite(J).run(elements = [J.t*J[1,1]+J[2], J[1]+(1+J.t)*J[1,1]])  # long time (3s on sage.math, 2012)
    12631263        """
    12641264        self._name = "Jack polynomials in the J basis"
    12651265        self._prefix = "JackJ"
     
    12951295
    12961296            sage: Q = SymmetricFunctions(FractionField(QQ['t'])).jack().J()
    12971297            sage: TestSuite(Q).run(skip=['_test_associativity', '_test_distributivity', '_test_prod']) # products are too expensive
    1298             sage: TestSuite(Q).run(elements = [Q.t*Q[1,1]+Q[2], Q[1]+(1+Q.t)*Q[1,1]])
     1298            sage: TestSuite(Q).run(elements = [Q.t*Q[1,1]+Q[2], Q[1]+(1+Q.t)*Q[1,1]])  # long time (3s on sage.math, 2012)
    12991299        """
    13001300        self._name = "Jack polynomials in the Q basis"
    13011301        self._prefix = "JackQ"
  • sage/combinat/sf/llt.py

    diff --git a/sage/combinat/sf/llt.py b/sage/combinat/sf/llt.py
    a b  
    731731        TESTS::
    732732
    733733            sage: HSp3 = SymmetricFunctions(FractionField(QQ['t'])).llt(3).hspin()
    734             sage: TestSuite(HSp3).run(skip = ["_test_associativity", "_test_distributivity", "_test_prod"]) # products are too expensive
    735             sage: TestSuite(HSp3).run(elements = [HSp3.t*HSp3[1,1]+HSp3.t*HSp3[2], HSp3[1]+(1+HSp3.t)*HSp3[1,1]])
     734            sage: TestSuite(HSp3).run(skip = ["_test_associativity", "_test_distributivity", "_test_prod"]) # products are too expensive, long time (10s on sage.math, 2012)
     735            sage: TestSuite(HSp3).run(elements = [HSp3.t*HSp3[1,1]+HSp3.t*HSp3[2], HSp3[1]+(1+HSp3.t)*HSp3[1,1]])  # long time (depends on previous)
    736736            sage: HS3t2 = SymmetricFunctions(QQ).llt(3,t=2).hspin()
    737737            sage: TestSuite(HS3t2).run(skip = ["_test_associativity", "_test_distributivity", "_test_prod"]) # products are too expensive
    738738            sage: TestSuite(HS3t2).run(elements = [2*HS3t2[1,1]+HS3t2[2], HS3t2[1]+3*HS3t2[1,1]])
    739739            sage: HS3x = SymmetricFunctions(FractionField(QQ['x'])).llt(3,t=x).hspin()
    740             sage: TestSuite(HS3x).run(skip = ["_test_associativity", "_test_distributivity", "_test_prod"]) # products are too expensive
    741             sage: TestSuite(HS3x).run(elements = [HS3x.t*HS3x[1,1]+HS3x.t*HS3x[2], HS3x[1]+(1+HS3x.t)*HS3x[1,1]])
     740            sage: TestSuite(HS3x).run(skip = ["_test_associativity", "_test_distributivity", "_test_prod"]) # products are too expensive, long time (4s on sage.math, 2012)
     741            sage: TestSuite(HS3x).run(elements = [HS3x.t*HS3x[1,1]+HS3x.t*HS3x[2], HS3x[1]+(1+HS3x.t)*HS3x[1,1]])  # long time (depends on previous)
    742742        """
    743743        level = llt._k
    744744        self._name = "LLT polynomials in the HSp basis at level %s"%level
     
    798798        TESTS::
    799799
    800800            sage: HCosp3 = SymmetricFunctions(FractionField(QQ['t'])).llt(3).hcospin()
    801             sage: TestSuite(HCosp3).run(skip = ["_test_associativity", "_test_distributivity", "_test_prod"]) # products are too expensive
    802             sage: TestSuite(HCosp3).run(elements = [HCosp3.t*HCosp3[1,1]+HCosp3.t*HCosp3[2], HCosp3[1]+(1+HCosp3.t)*HCosp3[1,1]])
     801            sage: TestSuite(HCosp3).run(skip = ["_test_associativity", "_test_distributivity", "_test_prod"]) # products are too expensive, long time (11s on sage.math, 2012)
     802            sage: TestSuite(HCosp3).run(elements = [HCosp3.t*HCosp3[1,1]+HCosp3.t*HCosp3[2], HCosp3[1]+(1+HCosp3.t)*HCosp3[1,1]])  # long time (depends on previous)
    803803            sage: HC3t2 = SymmetricFunctions(QQ).llt(3,t=2).hcospin()
    804804            sage: TestSuite(HC3t2).run(skip = ["_test_associativity", "_test_distributivity", "_test_prod"]) # products are too expensive
    805805            sage: TestSuite(HC3t2).run(elements = [2*HC3t2[1,1]+HC3t2[2], HC3t2[1]+3*HC3t2[1,1]])
    806806            sage: HC3x = SymmetricFunctions(FractionField(QQ['x'])).llt(3,t=x).hcospin()
    807             sage: TestSuite(HC3x).run(skip = ["_test_associativity", "_test_distributivity", "_test_prod"]) # products are too expensive
    808             sage: TestSuite(HC3x).run(elements = [HC3x.t*HC3x[1,1]+HC3x.t*HC3x[2], HC3x[1]+(1+HC3x.t)*HC3x[1,1]])
     807            sage: TestSuite(HC3x).run(skip = ["_test_associativity", "_test_distributivity", "_test_prod"]) # products are too expensive, long time (5s on sage.math, 2012)
     808            sage: TestSuite(HC3x).run(elements = [HC3x.t*HC3x[1,1]+HC3x.t*HC3x[2], HC3x[1]+(1+HC3x.t)*HC3x[1,1]])  # long time (depends on previous)
    809809        """
    810810        level = llt._k
    811811        self._name = "LLT polynomials in the HCosp basis at level %s"%level
  • sage/combinat/sf/macdonald.py

    diff --git a/sage/combinat/sf/macdonald.py b/sage/combinat/sf/macdonald.py
    a b  
    12431243                ((t^2+q-t-1)/(q*t-1))*McdH[1, 1] + ((-t^3+t^2+t-1)/(q*t-1))*McdH[2]
    12441244                sage: H(0).nabla()
    12451245                0
    1246                 sage: H([2,2,1]).nabla(t=1/H.t)
     1246                sage: H([2,2,1]).nabla(t=1/H.t)  # long time (4s on sage.math, 2012)
    12471247                q^2/t^4*McdH[2, 2, 1]
    12481248                sage: H([2,2,1]).nabla(t=1/H.t,power=-1)
    12491249                t^4/q^2*McdH[2, 2, 1]
     
    12751275
    12761276            sage: Sym = SymmetricFunctions(FractionField(QQ['q','t']))
    12771277            sage: P = Sym.macdonald().P()
    1278             sage: TestSuite(P).run(skip=["_test_associativity","_test_distributivity","_test_prod"])
    1279             sage: TestSuite(P).run(elements = [P.t*P[1,1]+P.q*P[2], P[1]+(P.q+P.t)*P[1,1]])
     1278            sage: TestSuite(P).run(skip=["_test_associativity","_test_distributivity","_test_prod"])  # long time (20s on sage.math, 2012)
     1279            sage: TestSuite(P).run(elements = [P.t*P[1,1]+P.q*P[2], P[1]+(P.q+P.t)*P[1,1]])  # long time (depends on previous)
    12801280        """
    12811281        self._name = "Macdonald polynomials in the P basis"
    12821282        self._prefix = "McdP"
     
    13461346
    13471347            sage: Sym = SymmetricFunctions(FractionField(QQ['q','t']))
    13481348            sage: Q = Sym.macdonald().Q()
    1349             sage: TestSuite(Q).run(skip=["_test_associativity","_test_distributivity","_test_prod"])
    1350             sage: TestSuite(Q).run(elements = [Q.t*Q[1,1]+Q.q*Q[2], Q[1]+(Q.q+Q.t)*Q[1,1]])
     1349            sage: TestSuite(Q).run(skip=["_test_associativity","_test_distributivity","_test_prod"])  # long time (29s on sage.math, 2012)
     1350            sage: TestSuite(Q).run(elements = [Q.t*Q[1,1]+Q.q*Q[2], Q[1]+(Q.q+Q.t)*Q[1,1]])  # long time (depends on previous)
    13511351        """
    13521352        self._name = "Macdonald polynomials in the Q basis"
    13531353        self._prefix = "McdQ"
     
    13811381
    13821382            sage: Sym = SymmetricFunctions(FractionField(QQ['q','t']))
    13831383            sage: J = Sym.macdonald().J()
    1384             sage: TestSuite(J).run(skip=["_test_associativity","_test_distributivity","_test_prod"])
    1385             sage: TestSuite(J).run(elements = [J.t*J[1,1]+J.q*J[2], J[1]+(J.q+J.t)*J[1,1]])
     1384            sage: TestSuite(J).run(skip=["_test_associativity","_test_distributivity","_test_prod"])  # long time (19s on sage.math, 2012)
     1385            sage: TestSuite(J).run(elements = [J.t*J[1,1]+J.q*J[2], J[1]+(J.q+J.t)*J[1,1]])  # long time (depends on previous)
    13861386        """
    13871387        self._name = "Macdonald polynomials in the J basis"
    13881388        self._prefix = "McdJ"
     
    14811481            sage: Sym = SymmetricFunctions(FractionField(QQ['q','t']))
    14821482            sage: H = Sym.macdonald().H()
    14831483            sage: TestSuite(H).run(skip=["_test_associativity","_test_distributivity","_test_prod"])
    1484             sage: TestSuite(H).run(elements = [H.t*H[1,1]+H.q*H[2], H[1]+(H.q+H.t)*H[1,1]])
     1484            sage: TestSuite(H).run(elements = [H.t*H[1,1]+H.q*H[2], H[1]+(H.q+H.t)*H[1,1]])  # long time (26s on sage.math, 2012)
    14851485        """
    14861486        self._name = "Macdonald polynomials in the H basis"
    14871487        self._prefix = "McdH"
     
    15761576
    15771577            sage: Sym = SymmetricFunctions(FractionField(QQ['q','t']))
    15781578            sage: Ht = Sym.macdonald().Ht()
    1579             sage: TestSuite(Ht).run(skip=["_test_associativity","_test_distributivity","_test_prod"])
    1580             sage: TestSuite(Ht).run(elements = [Ht.t*Ht[1,1]+Ht.q*Ht[2], Ht[1]+(Ht.q+Ht.t)*Ht[1,1]])
     1579            sage: TestSuite(Ht).run(skip=["_test_associativity","_test_distributivity","_test_prod"])  # long time (26s on sage.math, 2012)
     1580            sage: TestSuite(Ht).run(elements = [Ht.t*Ht[1,1]+Ht.q*Ht[2], Ht[1]+(Ht.q+Ht.t)*Ht[1,1]])  # long time (depends on previous)
    15811581        """
    15821582        self._name = "Macdonald polynomials in the Ht basis"
    15831583        self._prefix = "McdHt"