# HG changeset patch
# User Jeroen Demeyer <jdemeyer@cage.ugent.be>
# Date 1346504592 7200
# Node ID 5a8015a6d22a9e3160bed255b3a8d8653f3832c3
# Parent e746705c9c2e6bbb02d23da39bbd2fe8c7e70220
Add # long time where needed
diff git a/sage/combinat/sf/hall_littlewood.py b/sage/combinat/sf/hall_littlewood.py
a

b


1010  1010  
1011  1011  sage: Sym = SymmetricFunctions(FractionField(QQ['t'])) 
1012  1012  sage: Q = Sym.hall_littlewood().Q() 
1013   sage: TestSuite(Q).run(skip=['_test_associativity', '_test_distributivity', '_test_prod']) # products are too expensive 
1014   sage: TestSuite(Q).run(elements = [Q.t*Q[1,1]+Q[2], Q[1]+(1+Q.t)*Q[1,1]]) 
 1013  sage: TestSuite(Q).run(skip=['_test_associativity', '_test_distributivity', '_test_prod']) # products are too expensive, long time (3s on sage.math, 2012) 
 1014  sage: TestSuite(Q).run(elements = [Q.t*Q[1,1]+Q[2], Q[1]+(1+Q.t)*Q[1,1]]) # long time (depends on previous) 
1015  1015  
1016  1016  sage: Sym = SymmetricFunctions(FractionField(QQ['t'])) 
1017  1017  sage: HLP = Sym.hall_littlewood().P() 
… 
… 

1100  1100  
1101  1101  sage: Sym = SymmetricFunctions(FractionField(QQ['t'])) 
1102  1102  sage: Qp = Sym.hall_littlewood().Q() 
1103   sage: TestSuite(Qp).run(skip=['_test_passociativity', '_test_distributivity', '_test_prod']) # products are too expensive 
1104   sage: TestSuite(Qp).run(elements = [Qp.t*Qp[1,1]+Qp[2], Qp[1]+(1+Qp.t)*Qp[1,1]]) 
 1103  sage: TestSuite(Qp).run(skip=['_test_passociativity', '_test_distributivity', '_test_prod']) # products are too expensive, long time (3s on sage.math, 2012) 
 1104  sage: TestSuite(Qp).run(elements = [Qp.t*Qp[1,1]+Qp[2], Qp[1]+(1+Qp.t)*Qp[1,1]]) # long time (depends on previous) 
1105  1105  
1106  1106  sage: Sym = SymmetricFunctions(FractionField(QQ['t'])) 
1107  1107  sage: HLP = Sym.hall_littlewood().P() 
diff git a/sage/combinat/sf/jack.py b/sage/combinat/sf/jack.py
a

b


529  529  Jack polynomials in the J basis with t=1 over Rational Field 
530  530  sage: s = SymmetricFunctions(QQ).s() 
531  531  sage: p = Partition([3,2,1,1]) 
532   sage: s(J(p)) == p.hook_product(1)*s(p) 
 532  sage: s(J(p)) == p.hook_product(1)*s(p) # long time (4s on sage.math, 2012) 
533  533  True 
534  534  
535  535  At `t = 2`, the Jack polynomials on the J basis are scalar multiples 
… 
… 

1259  1259  
1260  1260  sage: J = SymmetricFunctions(FractionField(QQ['t'])).jack().J() 
1261  1261  sage: TestSuite(J).run(skip=['_test_associativity', '_test_distributivity', '_test_prod']) # products are too expensive 
1262   sage: TestSuite(J).run(elements = [J.t*J[1,1]+J[2], J[1]+(1+J.t)*J[1,1]]) 
 1262  sage: TestSuite(J).run(elements = [J.t*J[1,1]+J[2], J[1]+(1+J.t)*J[1,1]]) # long time (3s on sage.math, 2012) 
1263  1263  """ 
1264  1264  self._name = "Jack polynomials in the J basis" 
1265  1265  self._prefix = "JackJ" 
… 
… 

1295  1295  
1296  1296  sage: Q = SymmetricFunctions(FractionField(QQ['t'])).jack().J() 
1297  1297  sage: TestSuite(Q).run(skip=['_test_associativity', '_test_distributivity', '_test_prod']) # products are too expensive 
1298   sage: TestSuite(Q).run(elements = [Q.t*Q[1,1]+Q[2], Q[1]+(1+Q.t)*Q[1,1]]) 
 1298  sage: TestSuite(Q).run(elements = [Q.t*Q[1,1]+Q[2], Q[1]+(1+Q.t)*Q[1,1]]) # long time (3s on sage.math, 2012) 
1299  1299  """ 
1300  1300  self._name = "Jack polynomials in the Q basis" 
1301  1301  self._prefix = "JackQ" 
diff git a/sage/combinat/sf/llt.py b/sage/combinat/sf/llt.py
a

b


731  731  TESTS:: 
732  732  
733  733  sage: HSp3 = SymmetricFunctions(FractionField(QQ['t'])).llt(3).hspin() 
734   sage: TestSuite(HSp3).run(skip = ["_test_associativity", "_test_distributivity", "_test_prod"]) # products are too expensive 
735   sage: TestSuite(HSp3).run(elements = [HSp3.t*HSp3[1,1]+HSp3.t*HSp3[2], HSp3[1]+(1+HSp3.t)*HSp3[1,1]]) 
 734  sage: TestSuite(HSp3).run(skip = ["_test_associativity", "_test_distributivity", "_test_prod"]) # products are too expensive, long time (10s on sage.math, 2012) 
 735  sage: TestSuite(HSp3).run(elements = [HSp3.t*HSp3[1,1]+HSp3.t*HSp3[2], HSp3[1]+(1+HSp3.t)*HSp3[1,1]]) # long time (depends on previous) 
736  736  sage: HS3t2 = SymmetricFunctions(QQ).llt(3,t=2).hspin() 
737  737  sage: TestSuite(HS3t2).run(skip = ["_test_associativity", "_test_distributivity", "_test_prod"]) # products are too expensive 
738  738  sage: TestSuite(HS3t2).run(elements = [2*HS3t2[1,1]+HS3t2[2], HS3t2[1]+3*HS3t2[1,1]]) 
739  739  sage: HS3x = SymmetricFunctions(FractionField(QQ['x'])).llt(3,t=x).hspin() 
740   sage: TestSuite(HS3x).run(skip = ["_test_associativity", "_test_distributivity", "_test_prod"]) # products are too expensive 
741   sage: TestSuite(HS3x).run(elements = [HS3x.t*HS3x[1,1]+HS3x.t*HS3x[2], HS3x[1]+(1+HS3x.t)*HS3x[1,1]]) 
 740  sage: TestSuite(HS3x).run(skip = ["_test_associativity", "_test_distributivity", "_test_prod"]) # products are too expensive, long time (4s on sage.math, 2012) 
 741  sage: TestSuite(HS3x).run(elements = [HS3x.t*HS3x[1,1]+HS3x.t*HS3x[2], HS3x[1]+(1+HS3x.t)*HS3x[1,1]]) # long time (depends on previous) 
742  742  """ 
743  743  level = llt._k 
744  744  self._name = "LLT polynomials in the HSp basis at level %s"%level 
… 
… 

798  798  TESTS:: 
799  799  
800  800  sage: HCosp3 = SymmetricFunctions(FractionField(QQ['t'])).llt(3).hcospin() 
801   sage: TestSuite(HCosp3).run(skip = ["_test_associativity", "_test_distributivity", "_test_prod"]) # products are too expensive 
802   sage: TestSuite(HCosp3).run(elements = [HCosp3.t*HCosp3[1,1]+HCosp3.t*HCosp3[2], HCosp3[1]+(1+HCosp3.t)*HCosp3[1,1]]) 
 801  sage: TestSuite(HCosp3).run(skip = ["_test_associativity", "_test_distributivity", "_test_prod"]) # products are too expensive, long time (11s on sage.math, 2012) 
 802  sage: TestSuite(HCosp3).run(elements = [HCosp3.t*HCosp3[1,1]+HCosp3.t*HCosp3[2], HCosp3[1]+(1+HCosp3.t)*HCosp3[1,1]]) # long time (depends on previous) 
803  803  sage: HC3t2 = SymmetricFunctions(QQ).llt(3,t=2).hcospin() 
804  804  sage: TestSuite(HC3t2).run(skip = ["_test_associativity", "_test_distributivity", "_test_prod"]) # products are too expensive 
805  805  sage: TestSuite(HC3t2).run(elements = [2*HC3t2[1,1]+HC3t2[2], HC3t2[1]+3*HC3t2[1,1]]) 
806  806  sage: HC3x = SymmetricFunctions(FractionField(QQ['x'])).llt(3,t=x).hcospin() 
807   sage: TestSuite(HC3x).run(skip = ["_test_associativity", "_test_distributivity", "_test_prod"]) # products are too expensive 
808   sage: TestSuite(HC3x).run(elements = [HC3x.t*HC3x[1,1]+HC3x.t*HC3x[2], HC3x[1]+(1+HC3x.t)*HC3x[1,1]]) 
 807  sage: TestSuite(HC3x).run(skip = ["_test_associativity", "_test_distributivity", "_test_prod"]) # products are too expensive, long time (5s on sage.math, 2012) 
 808  sage: TestSuite(HC3x).run(elements = [HC3x.t*HC3x[1,1]+HC3x.t*HC3x[2], HC3x[1]+(1+HC3x.t)*HC3x[1,1]]) # long time (depends on previous) 
809  809  """ 
810  810  level = llt._k 
811  811  self._name = "LLT polynomials in the HCosp basis at level %s"%level 
diff git a/sage/combinat/sf/macdonald.py b/sage/combinat/sf/macdonald.py
a

b


1243  1243  ((t^2+qt1)/(q*t1))*McdH[1, 1] + ((t^3+t^2+t1)/(q*t1))*McdH[2] 
1244  1244  sage: H(0).nabla() 
1245  1245  0 
1246   sage: H([2,2,1]).nabla(t=1/H.t) 
 1246  sage: H([2,2,1]).nabla(t=1/H.t) # long time (4s on sage.math, 2012) 
1247  1247  q^2/t^4*McdH[2, 2, 1] 
1248  1248  sage: H([2,2,1]).nabla(t=1/H.t,power=1) 
1249  1249  t^4/q^2*McdH[2, 2, 1] 
… 
… 

1275  1275  
1276  1276  sage: Sym = SymmetricFunctions(FractionField(QQ['q','t'])) 
1277  1277  sage: P = Sym.macdonald().P() 
1278   sage: TestSuite(P).run(skip=["_test_associativity","_test_distributivity","_test_prod"]) 
1279   sage: TestSuite(P).run(elements = [P.t*P[1,1]+P.q*P[2], P[1]+(P.q+P.t)*P[1,1]]) 
 1278  sage: TestSuite(P).run(skip=["_test_associativity","_test_distributivity","_test_prod"]) # long time (20s on sage.math, 2012) 
 1279  sage: TestSuite(P).run(elements = [P.t*P[1,1]+P.q*P[2], P[1]+(P.q+P.t)*P[1,1]]) # long time (depends on previous) 
1280  1280  """ 
1281  1281  self._name = "Macdonald polynomials in the P basis" 
1282  1282  self._prefix = "McdP" 
… 
… 

1346  1346  
1347  1347  sage: Sym = SymmetricFunctions(FractionField(QQ['q','t'])) 
1348  1348  sage: Q = Sym.macdonald().Q() 
1349   sage: TestSuite(Q).run(skip=["_test_associativity","_test_distributivity","_test_prod"]) 
1350   sage: TestSuite(Q).run(elements = [Q.t*Q[1,1]+Q.q*Q[2], Q[1]+(Q.q+Q.t)*Q[1,1]]) 
 1349  sage: TestSuite(Q).run(skip=["_test_associativity","_test_distributivity","_test_prod"]) # long time (29s on sage.math, 2012) 
 1350  sage: TestSuite(Q).run(elements = [Q.t*Q[1,1]+Q.q*Q[2], Q[1]+(Q.q+Q.t)*Q[1,1]]) # long time (depends on previous) 
1351  1351  """ 
1352  1352  self._name = "Macdonald polynomials in the Q basis" 
1353  1353  self._prefix = "McdQ" 
… 
… 

1381  1381  
1382  1382  sage: Sym = SymmetricFunctions(FractionField(QQ['q','t'])) 
1383  1383  sage: J = Sym.macdonald().J() 
1384   sage: TestSuite(J).run(skip=["_test_associativity","_test_distributivity","_test_prod"]) 
1385   sage: TestSuite(J).run(elements = [J.t*J[1,1]+J.q*J[2], J[1]+(J.q+J.t)*J[1,1]]) 
 1384  sage: TestSuite(J).run(skip=["_test_associativity","_test_distributivity","_test_prod"]) # long time (19s on sage.math, 2012) 
 1385  sage: TestSuite(J).run(elements = [J.t*J[1,1]+J.q*J[2], J[1]+(J.q+J.t)*J[1,1]]) # long time (depends on previous) 
1386  1386  """ 
1387  1387  self._name = "Macdonald polynomials in the J basis" 
1388  1388  self._prefix = "McdJ" 
… 
… 

1481  1481  sage: Sym = SymmetricFunctions(FractionField(QQ['q','t'])) 
1482  1482  sage: H = Sym.macdonald().H() 
1483  1483  sage: TestSuite(H).run(skip=["_test_associativity","_test_distributivity","_test_prod"]) 
1484   sage: TestSuite(H).run(elements = [H.t*H[1,1]+H.q*H[2], H[1]+(H.q+H.t)*H[1,1]]) 
 1484  sage: TestSuite(H).run(elements = [H.t*H[1,1]+H.q*H[2], H[1]+(H.q+H.t)*H[1,1]]) # long time (26s on sage.math, 2012) 
1485  1485  """ 
1486  1486  self._name = "Macdonald polynomials in the H basis" 
1487  1487  self._prefix = "McdH" 
… 
… 

1576  1576  
1577  1577  sage: Sym = SymmetricFunctions(FractionField(QQ['q','t'])) 
1578  1578  sage: Ht = Sym.macdonald().Ht() 
1579   sage: TestSuite(Ht).run(skip=["_test_associativity","_test_distributivity","_test_prod"]) 
1580   sage: TestSuite(Ht).run(elements = [Ht.t*Ht[1,1]+Ht.q*Ht[2], Ht[1]+(Ht.q+Ht.t)*Ht[1,1]]) 
 1579  sage: TestSuite(Ht).run(skip=["_test_associativity","_test_distributivity","_test_prod"]) # long time (26s on sage.math, 2012) 
 1580  sage: TestSuite(Ht).run(elements = [Ht.t*Ht[1,1]+Ht.q*Ht[2], Ht[1]+(Ht.q+Ht.t)*Ht[1,1]]) # long time (depends on previous) 
1581  1581  """ 
1582  1582  self._name = "Macdonald polynomials in the Ht basis" 
1583  1583  self._prefix = "McdHt" 