Ticket #4102: trac_symbolic_bessel_v7-doctests.patch

File trac_symbolic_bessel_v7-doctests.patch, 5.0 KB (added by benjaminfjones, 8 years ago)

fixes/updates doctests external to sage/functions/bessel.py

  • doc/de/tutorial/tour_algebra.rst

    # HG changeset patch
    # User Benjamin Jones <benjaminfjones@gmail.com>
    # Date 1363112301 25200
    # Node ID 3c7b2ff7168779d990bfd2651c2e81cf2d298ba0
    # Parent  6113d8ef029474e650e11c784ba084da2bfef603
    Trac 4102: fix doctests and tutorials involving Bessel function API
    
    diff --git a/doc/de/tutorial/tour_algebra.rst b/doc/de/tutorial/tour_algebra.rst
    a b  
    402402    sage: x = polygen(QQ, 'x')
    403403    sage: chebyshev_U(2,x)
    404404    4*x^2 - 1
    405     sage: bessel_I(1,1,"pari",250)
     405    sage: bessel_I(1,1).n(250)
    406406    0.56515910399248502720769602760986330732889962162109200948029448947925564096
    407     sage: bessel_I(1,1)
     407    sage: bessel_I(1,1).n()
    408408    0.565159103992485
    409     sage: bessel_I(2,1.1,"maxima")  # last few digits are random
    410     0.16708949925104899
     409    sage: bessel_I(2,1.1).n()
     410    0.167089499251049
    411411
    412412Zum jetzigen Zeitpunkt, enthält Sage nur Wrapper-Funktionen für
    413413numerische Berechnungen. Um symbolisch zu rechen, rufen Sie die
  • doc/en/constructions/interface_issues.rst

    diff --git a/doc/en/constructions/interface_issues.rst b/doc/en/constructions/interface_issues.rst
    a b  
    511511    sage: pari('2').besselk(3)
    512512    0.0615104584717420
    513513
    514 The last command can also be executed using the command
    515 
    516 ::
    517 
    518     sage: bessel_K(3,2)
    519     0.647385390948634
    520     sage: bessel_K(3,2,prec=100)
    521     0.64738539094863415315923557097
    522514
    523515What is Sage?
    524516=============
  • doc/en/tutorial/tour_algebra.rst

    diff --git a/doc/en/tutorial/tour_algebra.rst b/doc/en/tutorial/tour_algebra.rst
    a b  
    395395    sage: x = polygen(QQ, 'x')
    396396    sage: chebyshev_U(2,x)
    397397    4*x^2 - 1
    398     sage: bessel_I(1,1,"pari",250)
     398    sage: bessel_I(1,1).n(250)
    399399    0.56515910399248502720769602760986330732889962162109200948029448947925564096
    400     sage: bessel_I(1,1)
     400    sage: bessel_I(1,1).n()
    401401    0.565159103992485
    402     sage: bessel_I(2,1.1,"maxima")  # last few digits are random
    403     0.16708949925104899
     402    sage: bessel_I(2,1.1).n()
     403    0.167089499251049
    404404
    405405At this point, Sage has only wrapped these functions for numerical use.
    406406For symbolic use, please use the Maxima interface directly, as in
  • doc/fr/tutorial/tour_algebra.rst

    diff --git a/doc/fr/tutorial/tour_algebra.rst b/doc/fr/tutorial/tour_algebra.rst
    a b  
    374374    sage: x = polygen(QQ, 'x')
    375375    sage: chebyshev_U(2,x)
    376376    4*x^2 - 1
    377     sage: bessel_I(1,1,"pari",250)
     377    sage: bessel_I(1,1).n(250)
    378378    0.56515910399248502720769602760986330732889962162109200948029448947925564096
    379     sage: bessel_I(1,1)
     379    sage: bessel_I(1,1).n()
    380380    0.565159103992485
    381     sage: bessel_I(2,1.1,"maxima")  # les quelques derniers chiffres sont aléatoires
    382     0.167089499251049...
     381    sage: bessel_I(2,1.1).n()
     382    0.167089499251049
    383383
    384384Pour l'instant, ces fonctions n'ont été adaptées à Sage que pour une
    385385utilisation numérique. Pour faire du calcul formel, il faut utiliser
  • doc/ru/tutorial/tour_algebra.rst

    diff --git a/doc/ru/tutorial/tour_algebra.rst b/doc/ru/tutorial/tour_algebra.rst
    a b  
    372372    sage: x = polygen(QQ, 'x')
    373373    sage: chebyshev_U(2,x)
    374374    4*x^2 - 1
    375     sage: bessel_I(1,1,"pari",250)
     375    sage: bessel_I(1,1).n(250)
    376376    0.56515910399248502720769602760986330732889962162109200948029448947925564096
    377     sage: bessel_I(1,1)
     377    sage: bessel_I(1,1).n()
    378378    0.565159103992485
    379     sage: bessel_I(2,1.1,"maxima")  # последние несколько цифр могут быть неточными
     379    sage: bessel_I(2,1.1).n()
    380380    0.167089499251049
    381381
    382382На данный момент Sage рассматривает данные функции только для численного
  • sage/calculus/desolvers.py

    diff --git a/sage/calculus/desolvers.py b/sage/calculus/desolvers.py
    a b  
    250250    k2=0.::
    251251           
    252252        sage: desolve(x^2*diff(y,x,x)+x*diff(y,x)+(x^2-4)*y==0,y)
    253         k1*bessel_j(2, x) + k2*bessel_y(2, x)
     253        k1*bessel_J(2, x) + k2*bessel_Y(2, x)
    254254   
    255255    Difficult ODE produces error::
    256256
  • sage/calculus/wester.py

    diff --git a/sage/calculus/wester.py b/sage/calculus/wester.py
    a b  
    3636::
    3737
    3838    sage: # (YES) Evaluate the Bessel function J[2] numerically at z=1+I.
    39     sage: bessel_J (2, 1+I)
     39    sage: bessel_J(2, 1+I).n()
    4040    0.0415798869439621 + 0.247397641513306*I
    4141
    4242::
  • sage/symbolic/random_tests.py

    diff --git a/sage/symbolic/random_tests.py b/sage/symbolic/random_tests.py
    a b  
    232232    EXAMPLES::
    233233
    234234        sage: from sage.symbolic.random_tests import *
    235         sage: set_random_seed(1)
     235        sage: set_random_seed(53)
    236236        sage: random_expr(50, nvars=3, coeff_generator=CDF.random_element) # random
    237237        (v1^(0.97134084277 + 0.195868299334*I)/csc(-pi + v1^2 + v3) + sgn(1/
    238238        ((-v3 - 0.760455994772 - 0.554367254855*I)*erf(v3 + 0.982759757946 -