# HG changeset patch
# User Alexandru Ghitza <aghitza@alum.mit.edu>
# Date 1221956146 36000
# Node ID 9644bc926fcec21dac83d2a400d0da4d17e909a9
# Parent f23a4b599bad6f54b7ad716ad5c87df7a87a9945
trac #3897: fix a few typos
diff r f23a4b599bad r 9644bc926fce sage/rings/integer_ring.pyx
a

b


659  659  
660  660  def residue_field(self, prime, check = True): 
661  661  """ 
662   Return the residue field of the integers modulo thegiven prime, ie $\Z/p\Z$. 
 662  Return the residue field of the integers modulo the given prime, ie $\Z/p\Z$. 
663  663  
664  664  INPUT: 
665  665  prime  a prime number 
diff r f23a4b599bad r 9644bc926fce sage/rings/number_field/number_field.py
a

b


2484  2484  
2485  2485  def _normalize_prime_list(self, v): 
2486  2486  """ 
2487   Internal function to convert into a list of primes either None 
 2487  Internal function to convert into a tuple of primes either None 
2488  2488  or a single prime or a list. 
2489  2489  
2490  2490  EXAMPLES: 
… 
… 

4360  4360  def galois_closure(self, names=None): 
4361  4361  """ 
4362  4362  Return the absolute number field $K$ that is the Galois 
4363   closure of this relatice number field. 
 4363  closure of this relative number field. 
4364  4364  
4365  4365  EXAMPLES: 
4366  4366  sage: K.<a,b> = NumberField([x^4 + 3, x^2 + 2]); K 
… 
… 

6431  6431  OUTPUT: None. The list is altered inplace, so that, if possible, 
6432  6432  the first embedding has been switched with one of the 
6433  6433  others, so that if there is an embedding which preserves 
6434   tha generator names then it appears first. 
 6434  the generator names then it appears first. 
6435  6435  
6436  6436  EXAMPLES: 
6437  6437  sage: K.<a> = CyclotomicField(7) 