Ticket #3858: ref.patch

File ref.patch, 8.1 KB (added by jhpalmieri, 12 years ago)
  • sage/calculus/calculus.py

    # HG changeset patch
    # User J. H. Palmieri <palmieri@math.washington.edu>
    # Date 1218748819 25200
    # Node ID 6e2afe97a9d8e2e288d21eb826fcf900cd7db2cb
    # Parent  6946afd933b4f1b19ca2a38f722fc6db15aaa321
    fixes in automatic production of reference manual from source
    
    diff -r 6946afd933b4 -r 6e2afe97a9d8 sage/calculus/calculus.py
    a b  
    236236is different than the one in the interactive interpreter.
    237237
    238238Check to see that the problem with the variables method mentioned in Trac
    239 ticket #3779 is actually fixed:
     239ticket \#3779 is actually fixed:
    240240    sage: f = function('F',x)
    241241    sage: diff(f*SR(1),x)
    242242    diff(F(x), x, 1)
  • sage/combinat/root_system/dynkin_diagram.py

    diff -r 6946afd933b4 -r 6e2afe97a9d8 sage/combinat/root_system/dynkin_diagram.py
    a b  
    210210        return result
    211211
    212212    def __getitem__(self, i):
    213         """
     213        r"""
    214214        With a tuple (i,j) as argument, returns the scalar product $\langle
    215215        \alpha^\vee_i, \alpha_j\rangle$.
    216216
  • sage/combinat/root_system/root_system.py

    diff -r 6946afd933b4 -r 6e2afe97a9d8 sage/combinat/root_system/root_system.py
    a b  
    5353        sage: space
    5454        Root lattice of the Root system of type ['B', 3]
    5555
    56       It is the free \ZZ module $\bigoplus_i \ZZ.\alpha_i$ spanned by
     56      It is the free $\ZZ$-module $\bigoplus_i \ZZ.\alpha_i$ spanned by
    5757      the simple roots:
    5858       
    5959        sage: space.base_ring()
  • sage/combinat/root_system/weyl_characters.py

    diff -r 6946afd933b4 -r 6e2afe97a9d8 sage/combinat/root_system/weyl_characters.py
    a b  
    312312            sage: B3 = WeylCharacterRing(['B',3])
    313313            sage: B3(1/2,1/2,1/2).mlist()
    314314            [[(1/2, -1/2, -1/2), 1], [(-1/2, 1/2, -1/2), 1], [(1/2, 1/2, 1/2), 1], [(1/2, 1/2, -1/2), 1], [(-1/2, -1/2, 1/2), 1], [(-1/2, -1/2, -1/2), 1], [(1/2, -1/2, 1/2), 1], [(-1/2, 1/2, 1/2), 1]]
    315 
     315        """
    316316# Why did the test not pass with the following indentation?
    317317#             [[( 1/2, -1/2, -1/2), 1],
    318318#              [(-1/2,  1/2, -1/2), 1],
     
    322322#              [(-1/2, -1/2, -1/2), 1],
    323323#              [( 1/2, -1/2,  1/2), 1],
    324324#              [(-1/2,  1/2,  1/2), 1]]
    325         """
    326325        return [[k,m] for k,m in self._mdict.iteritems()]
    327326
    328327    def parent(self):
  • sage/matrix/matrix0.pyx

    diff -r 6946afd933b4 -r 6e2afe97a9d8 sage/matrix/matrix0.pyx
    a b  
    27122712            sage: parent(~1)
    27132713            Rational Field
    27142714
    2715         A matrix with 0 rows and 0 columns is invertible (see trac#3734):
     2715        A matrix with 0 rows and 0 columns is invertible (see trac \#3734):
    27162716            sage: M = MatrixSpace(RR,0,0)(0); M
    27172717            []
    27182718            sage: M.determinant()
  • sage/matrix/matrix_modn_dense.pyx

    diff -r 6946afd933b4 -r 6e2afe97a9d8 sage/matrix/matrix_modn_dense.pyx
    a b  
    350350       
    351351       
    352352    def _unpickle(self, data, int version):
    353         """
     353        r"""
    354354        TESTS:
    355355       
    356356        Test for char-sized modulus:
  • sage/modular/congroup.py

    diff -r 6946afd933b4 -r 6e2afe97a9d8 sage/modular/congroup.py
    a b  
    476476
    477477def lift_to_sl2z(c, d, N):
    478478    """
    479     Given a vector (c, d) in (Z/NZ)^2, this function computes and
     479    Given a vector (c, d) in $(Z/NZ)^2$, this function computes and
    480480    returns a list [a, b, c', d'] that defines a 2x2 matrix with
    481481    determinant 1 and integer entries, such that c=c'(mod N) and
    482482    d=d'(mod N).
     
    15651565
    15661566
    15671567    def _reduce_coset(self, uu, vv):
    1568         """
     1568        r"""
    15691569        Compute a canonical form for a given Manin symbol.
    15701570       
    15711571        INPUT:
     
    16041604            sage: len(v)
    16051605            361
    16061606
    1607         This demonstrates the problem underlying trac #1220:
     1607        This demonstrates the problem underlying trac \#1220:
    16081608            sage: G = GammaH(99, [67])
    16091609            sage: G._reduce_coset(11,-3)
    16101610            (11, 96)
  • sage/modular/modsym/boundary.py

    diff -r 6946afd933b4 -r 6e2afe97a9d8 sage/modular/modsym/boundary.py
    a b  
    66form $[P, u/v]$, where $u/v$ is a cusp for our group $G$. The group of
    77boundary modular symbols naturally embeds into a vector space $B_k(G)$
    88(see Stein, section 8.4, or Merel, section 1.4, where this space is
    9 called $\mathbb{C}[\Gamma \\ \mathbb{Q}]_k$, for a definition), which
    10 is a finite dimensional $\mathbb{Q}$ vector space of dimension equal
     9called $\CC[\Gamma \\ \QQ]_k$, for a definition), which
     10is a finite dimensional $\QQ$ vector space of dimension equal
    1111to the number of cusps for $G$. The embedding takes $[P, u/v]$ to
    1212$P(u,v)\cdot [(u,v)]$. We represent the basis vectors by pairs [(u,v)]
    1313with u, v coprime. On $B_k(G)$, we have the relations
    1414\[ [\gamma \cdot (u,v)] = [(u,v)] \]
    1515for all $\gamma \in G$ and
    1616\[ [(\lambda u, \lambda v)] = \operatorname{sign}(\lambda)^k [(u,v)] \]
    17 for all $\lambda \in \mathbb{Q}^\times$.
     17for all $\lambda \in \QQ^\times$.
    1818
    1919It's possible for these relations to kill a class, i.e., for a pair
    2020[(u,v)] to be 0. For example, when N=4, u=1, v=2 and k=3 then (-1,-2)
  • sage/modular/modsym/modsym.py

    diff -r 6946afd933b4 -r 6e2afe97a9d8 sage/modular/modsym/modsym.py
    a b  
    1 """
     1r"""
    22Creation of modular symbols spaces
    33
    44EXAMPLES:
     
    4040    sage: t2*t5 - t5*t2 == 0
    4141    True
    4242
    43 This tests the bug reported in trac #1220:
     43This tests the bug reported in trac \#1220:
    4444    sage: G = GammaH(36, [13, 19])
    4545    sage: G.modular_symbols()
    4646    Modular Symbols space of dimension 13 for Congruence Subgroup Gamma_H(36) with H generated by [13, 19] of weight 2 with sign 0 and over Rational Field
  • sage/modules/free_module.py

    diff -r 6946afd933b4 -r 6e2afe97a9d8 sage/modules/free_module.py
    a b  
    852852   
    853853
    854854    def __len__(self):
    855         """
     855        r"""
    856856        Return the cardinality of the free module.
    857857
    858         N.B. Currently len(QQ) gives a TypeError, hence so does len(QQ^3).
     858        N.B. Currently len(QQ) gives a TypeError, hence so does len(QQ\^{}3).
    859859
    860860        EXAMPLES:
    861861            sage: k.<a> = FiniteField(9)
     
    21222122            User basis matrix:
    21232123            [2 4 0]
    21242124           
    2125         The following module isn't in the ambient module ZZ^3 but is
    2126         contained in the ambient vector space QQ^3:
     2125        The following module isn't in the ambient module $ZZ^3$ but is
     2126        contained in the ambient vector space $QQ^3$:
    21272127
    21282128            sage: V = M.ambient_vector_space()
    21292129            sage: W.span_of_basis([ V([1/5,2/5,0]), V([1/7,1/7,0]) ])
  • sage/rings/real_mpfi.pyx

    diff -r 6946afd933b4 -r 6e2afe97a9d8 sage/rings/real_mpfi.pyx
    a b  
    10101010
    10111011        Then the interval is contained in the interval:
    10121012
    1013         mantissa*b^exponent - error*b^k .. mantissa*b^exponent + error*b^k
     1013        $\text{mantissa}*b^{\text{exponent}} - \text{error}*b^k ..
     1014        \text{mantissa}*b^{\text{exponent}} + \text{error}*b^k$
    10141015
    10151016        To control the printing, we can specify a maximum number of
    10161017        error digits.  The default is 0, which means that we do not print
     
    29312931        return x
    29322932
    29332933    def is_int(self):
    2934         """
     2934        r"""
    29352935        OUTPUT:
    29362936            bool -- True or False
    29372937            n -- an integer