Ticket #22626: groups.patch

File groups.patch, 8.9 KB (added by dimpase, 3 years ago)

patches for src/sage/groups/

  • src/sage/groups/abelian_gps/abelian_group_gap.py

    diff --git a/src/sage/groups/abelian_gps/abelian_group_gap.py b/src/sage/groups/abelian_gps/abelian_group_gap.py
    index cebcd39f12..55a20ed627 100644
    a b class AbelianGroup_gap(UniqueRepresentation, GroupMixinLibGAP, ParentLibGAP, Abe 
    363363            sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
    364364            sage: G = AbelianGroupGap([2, 3])
    365365            sage: G.all_subgroups()
    366             [Subgroup of Abelian group with gap, generator orders (2, 3) generated by (1,),
     366            [Subgroup of Abelian group with gap, generator orders (2, 3) generated by (),
    367367             Subgroup of Abelian group with gap, generator orders (2, 3) generated by (f1,),
    368368             Subgroup of Abelian group with gap, generator orders (2, 3) generated by (f2,),
    369              Subgroup of Abelian group with gap, generator orders (2, 3) generated by (f1, f2)]
     369             Subgroup of Abelian group with gap, generator orders (2, 3) generated by (f2, f1)]
    370370        """
    371371        subgroups_gap = self.gap().AllSubgroups()
    372372        subgroups_sage = []
  • src/sage/groups/braid.py

    diff --git a/src/sage/groups/braid.py b/src/sage/groups/braid.py
    index cbcdfe3ca8..9495e787ef 100644
    a b class BraidGroup_class(FiniteTypeArtinGroup): 
    21572157
    21582158            sage: B = BraidGroup(5)
    21592159            sage: B._element_from_libbraiding([[-2], [2, 1], [1, 2], [2, 1]])
    2160             (s0^-1*s1^-1*s2^-1*s3^-1*s0^-1*s1^-1*s2^-1*s0^-1*s1^-1*s0^-1)^2*s1*s0^2*s1^2*s0
     2160            (s0^-1*s1^-1*s2^-1*s3^-1*s0^-1*s1^-1*s2^-1*s0^-1*s1^-1*s0^-1)^2*s1*s0^2*s1^2*s\
     2161            0
    21612162            sage: B._element_from_libbraiding([[0]])
    21622163            1
    21632164        """
  • src/sage/groups/finitely_presented.py

    diff --git a/src/sage/groups/finitely_presented.py b/src/sage/groups/finitely_presented.py
    index 8f9c192fed..e8284aeefc 100644
    a b class FinitelyPresentedGroupElement(FreeGroupElement): 
    231231
    232232            sage: TestSuite(G).run()
    233233            sage: TestSuite(H).run()
    234 
     234            #I  MakeReadWriteGlobal: CosetTableDefaultMaxLimit already read-write
    235235            sage: G.<a,b> = FreeGroup()
    236236            sage: H = G / (G([1]), G([2, 2, 2]))
    237237            sage: x = H([1, 2, -1, -2])
    class FinitelyPresentedGroup(GroupMixinLibGAP, UniqueRepresentation, 
    10961096            sage: C7 = G / [G.0**7]; C6 =  G / [G.0**6]
    10971097            sage: C14 = G / [G.0**14]; C3 =  G / [G.0**3]
    10981098            sage: C7.direct_product(C6).is_isomorphic(C14.direct_product(C3))
     1099            #I  Forcing finiteness test
    10991100            True
    11001101            sage: F = FreeGroup(2); D = F / [F([1,1,1,1,1]),F([2,2]),F([1,2])**2]
    11011102            sage: D.direct_product(D).as_permutation_group().is_isomorphic(
    class FinitelyPresentedGroup(GroupMixinLibGAP, UniqueRepresentation, 
    11891190            sage: alpha = (Q.gens(), [a,b])
    11901191            sage: S2 = C2.semidirect_product(Q, ([C2.0],[alpha]))
    11911192            sage: S1.is_isomorphic(S2)
     1193            #I  Forcing finiteness test
    11921194            True
    11931195
    11941196        Dihedral groups can be constructed as semidirect products
    class FinitelyPresentedGroup(GroupMixinLibGAP, UniqueRepresentation, 
    12471249            sage: Se2 =  D.semidirect_product(C ,id2)
    12481250            sage: Dp1 = C.direct_product(D)
    12491251            sage: Dp1.is_isomorphic(Se1), Dp1.is_isomorphic(Se2)
     1252            #I  Forcing finiteness test
     1253            #I  Forcing finiteness test
    12501254            (True, True)
    12511255
    12521256        Most checks for validity of input are left to GAP to handle::
    class FinitelyPresentedGroup(GroupMixinLibGAP, UniqueRepresentation, 
    14451449            sage: H = AlternatingGroup(3)
    14461450            sage: G.epimorphisms(H)
    14471451            [Generic morphism:
    1448             From: Finitely presented group < x0, x1, x2 | (x0*x1*x2)^2, x0^3 >
    1449             To:   Alternating group of order 3!/2 as a permutation group
    1450             Defn: x0 |--> ()
    1451                   x1 |--> (1,2,3)
    1452                   x2 |--> (1,3,2), Generic morphism:
    1453             From: Finitely presented group < x0, x1, x2 | (x0*x1*x2)^2, x0^3 >
    1454             To:   Alternating group of order 3!/2 as a permutation group
    1455             Defn: x0 |--> (1,2,3)
    1456                   x1 |--> ()
    1457                   x2 |--> (1,3,2), Generic morphism:
    1458             From: Finitely presented group < x0, x1, x2 | (x0*x1*x2)^2, x0^3 >
    1459             To:   Alternating group of order 3!/2 as a permutation group
    1460             Defn: x0 |--> (1,2,3)
    1461                   x1 |--> (1,2,3)
    1462                   x2 |--> (1,2,3), Generic morphism:
    1463             From: Finitely presented group < x0, x1, x2 | (x0*x1*x2)^2, x0^3 >
    1464             To:   Alternating group of order 3!/2 as a permutation group
    1465             Defn: x0 |--> (1,2,3)
    1466                   x1 |--> (1,3,2)
    1467                   x2 |--> ()]
    1468        
     1452               From: Finitely presented group < x0, x1, x2 | (x0*x1*x2)^2, x0^3 >
     1453               To:   Alternating group of order 3!/2 as a permutation group
     1454               Defn: x0 |--> ()
     1455                     x1 |--> (1,3,2)
     1456                     x2 |--> (1,2,3), Generic morphism:
     1457               From: Finitely presented group < x0, x1, x2 | (x0*x1*x2)^2, x0^3 >
     1458               To:   Alternating group of order 3!/2 as a permutation group
     1459               Defn: x0 |--> (1,3,2)
     1460                     x1 |--> ()
     1461                     x2 |--> (1,2,3), Generic morphism:
     1462               From: Finitely presented group < x0, x1, x2 | (x0*x1*x2)^2, x0^3 >
     1463               To:   Alternating group of order 3!/2 as a permutation group
     1464               Defn: x0 |--> (1,3,2)
     1465                     x1 |--> (1,2,3)
     1466                     x2 |--> (), Generic morphism:
     1467               From: Finitely presented group < x0, x1, x2 | (x0*x1*x2)^2, x0^3 >
     1468               To:   Alternating group of order 3!/2 as a permutation group
     1469               Defn: x0 |--> (1,2,3)
     1470                     x1 |--> (1,2,3)
     1471                     x2 |--> (1,2,3)]
     1472
    14691473        ALGORITHM:
    14701474       
    14711475        Uses libgap's GQuotients function.
  • src/sage/groups/finitely_presented_named.py

    diff --git a/src/sage/groups/finitely_presented_named.py b/src/sage/groups/finitely_presented_named.py
    index cfd8953b0a..7aaf673958 100644
    a b def CyclicPresentation(n): 
    8686        Finitely presented group < a | a^10 >
    8787        sage: n = 8; C = groups.presentation.Cyclic(n)
    8888        sage: C.as_permutation_group().is_isomorphic(CyclicPermutationGroup(n))
     89        #I  MakeReadWriteGlobal: CosetTableDefaultMaxLimit already read-write
    8990        True
    9091
    9192    TESTS::
    def QuaternionPresentation(): 
    447448        sage: Q.order(), Q.is_abelian()
    448449        (8, False)
    449450        sage: Q.is_isomorphic(groups.presentation.DiCyclic(2))
     451        #I  Forcing finiteness test
    450452        True
    451453    """
    452454    F = FreeGroup(['a','b'])
    def BinaryDihedralPresentation(n): 
    546548        ....:     P = groups.presentation.BinaryDihedral(n)
    547549        ....:     M = groups.matrix.BinaryDihedral(n)
    548550        ....:     assert P.is_isomorphic(M)
     551        #I  Forcing finiteness test
     552        #I  Forcing finiteness test
     553        #I  Forcing finiteness test
     554        #I  Forcing finiteness test
     555        #I  Forcing finiteness test
     556        #I  Forcing finiteness test
    549557    """
    550558    F = FreeGroup('x,y,z')
    551559    x,y,z = F.gens()
  • src/sage/groups/perm_gps/permgroup.py

    diff --git a/src/sage/groups/perm_gps/permgroup.py b/src/sage/groups/perm_gps/permgroup.py
    index a46b68025f..0849f9c3dd 100644
    a b class PermutationGroup_generic(FiniteGroup): 
    26622662            sage: K = G.as_finitely_presented_group(); K
    26632663            Finitely presented group < a, b | b^2, (b*a)^2, b*a^-3*b*a^2 >
    26642664            sage: K.as_permutation_group().is_isomorphic(DihedralGroup(5))
     2665            #I  MakeReadWriteGlobal: CosetTableDefaultMaxLimit already read-write
    26652666            True
    26662667
    26672668        We can attempt to reduce the output presentation::
    class PermutationGroup_generic(FiniteGroup): 
    32573258             Subgroup of (Cyclic group of order 14 as a permutation group) generated by [(1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14)],
    32583259             Subgroup of (Cyclic group of order 14 as a permutation group) generated by [(1,3,5,7,9,11,13)(2,4,6,8,10,12,14)],
    32593260             Subgroup of (Cyclic group of order 14 as a permutation group) generated by [(1,2,3,4,5,6,7,8,9,10,11,12,13,14), (1,3,5,7,9,11,13)(2,4,6,8,10,12,14)]]
    3260              Subgroup of (Cyclic group of order 14 as a permutation group) generated by [(1,2,3,4,5,6,7,8,9,10,11,12,13,14)]]
    32613261
    32623262        AUTHOR:
    32633263
    class PermutationGroup_generic(FiniteGroup): 
    36593659            rec(
    36603660              name := "Z(5)",
    36613661              parameter := 5,
    3662               series := "Z" )
     3662              series := "Z",
     3663              shortname := "C5" )
    36633664
    36643665        TESTS:
    36653666