Ticket #22452: doctest-22452-polymake3.0.9.log

File doctest-22452-polymake3.0.9.log, 11.6 KB (added by vdelecroix, 5 years ago)

doctest at commit afdbcdb for polymake 3.0.9

Line 
1too few successful tests, not using stored timings
2Running doctests with ID 2017-03-10-19-41-30-0b76ecd1.
3Git branch: u/SimonKing/create_a_polymake_pexpect_interface
4Using --optional=polymake,sage
5Doctesting 1 file.
6sage -t --long src/sage/interfaces/polymake.py
7**********************************************************************
8File "src/sage/interfaces/polymake.py", line 236, in sage.interfaces.polymake.Polymake._function_element_class
9Failed example:
10    p.get_schedule('F_VECTOR')                # optional - polymake
11Expected:
12    CONE_DIM : RAYS | INPUT_RAYS
13    precondition : BOUNDED ( POINTED : )
14    POINTED :
15    N_INPUT_RAYS : INPUT_RAYS
16    precondition : ...
17    ...
18    N_RAYS : RAYS
19    N_FACETS : FACETS
20    precondition : COMBINATORIAL_DIM ( F_VECTOR : N_FACETS, N_RAYS, GRAPH.N_EDGES, DUAL_GRAPH.N_EDGES, COMBINATORIAL_DIM )
21    F_VECTOR : N_FACETS, N_RAYS, GRAPH.N_EDGES, DUAL_GRAPH.N_EDGES, COMBINATORIAL_DIM
22Got:
23    CONE_DIM : RAYS | INPUT_RAYS
24    precondition : BOUNDED ( POINTED : )
25    POINTED :
26    precondition : POINTED ( LINEALITY_DIM, LINEALITY_SPACE : CONE_AMBIENT_DIM )
27    LINEALITY_DIM, LINEALITY_SPACE : CONE_AMBIENT_DIM
28    COMBINATORIAL_DIM : CONE_DIM, LINEALITY_DIM
29    N_INPUT_RAYS : INPUT_RAYS
30    precondition : N_RAYS | N_INPUT_RAYS ( ppl.convex_hull.primal: FACETS, LINEAR_SPAN : RAYS | INPUT_RAYS )
31    sensitivity check for FacetPerm
32    ppl.convex_hull.primal: FACETS, LINEAR_SPAN : RAYS | INPUT_RAYS
33    INPUT_RAYS_IN_FACETS : INPUT_RAYS, FACETS
34    sensitivity check for VertexPerm
35    RAYS_IN_FACETS, RAYS, LINEALITY_SPACE : INPUT_RAYS_IN_FACETS, INPUT_RAYS
36    GRAPH.ADJACENCY : RAYS_IN_FACETS
37    DUAL_GRAPH.ADJACENCY : RAYS_IN_FACETS
38    N_EDGES : ADJACENCY ( applied to GRAPH )
39    N_EDGES : ADJACENCY ( applied to DUAL_GRAPH )
40    N_FACETS : FACETS
41    N_RAYS : RAYS
42    precondition : COMBINATORIAL_DIM ( F_VECTOR : N_FACETS, N_RAYS, GRAPH.N_EDGES, DUAL_GRAPH.N_EDGES, COMBINATORIAL_DIM )
43    F_VECTOR : N_FACETS, N_RAYS, GRAPH.N_EDGES, DUAL_GRAPH.N_EDGES, COMBINATORIAL_DIM
44**********************************************************************
45File "src/sage/interfaces/polymake.py", line 289, in sage.interfaces.polymake.Polymake._function_call_string
46Failed example:
47    if isinstance(g, sage.interfaces.polymake.PolymakeElement): # optional - polymake
48        print g
49    else:
50        print g()
51Exception raised:
52    Traceback (most recent call last):
53      File "/opt/sage/local/lib/python2.7/site-packages/sage/doctest/forker.py", line 498, in _run
54        self.compile_and_execute(example, compiler, test.globs)
55      File "/opt/sage/local/lib/python2.7/site-packages/sage/doctest/forker.py", line 861, in compile_and_execute
56        exec(compiled, globs)
57      File "<doctest sage.interfaces.polymake.Polymake._function_call_string[5]>", line 4, in <module>
58        print g()
59      File "/opt/sage/local/lib/python2.7/site-packages/sage/interfaces/polymake.py", line 1754, in __call__
60        return self._obj._check_valid().function_call(self._name, list(args), kwds)
61      File "/opt/sage/local/lib/python2.7/site-packages/sage/interfaces/polymake.py", line 264, in function_call
62        return self(s)
63      File "/opt/sage/local/lib/python2.7/site-packages/sage/interfaces/interface.py", line 259, in __call__
64        return cls(self, x, name=name)
65      File "/opt/sage/local/lib/python2.7/site-packages/sage/interfaces/expect.py", line 1388, in __init__
66        raise_(TypeError, x, sys.exc_info()[2])
67      File "/opt/sage/local/lib/python2.7/site-packages/sage/interfaces/expect.py", line 1383, in __init__
68        self._name = parent._create(value, name=name)
69      File "/opt/sage/local/lib/python2.7/site-packages/sage/interfaces/polymake.py", line 596, in _create
70        self.set(name, value)
71      File "/opt/sage/local/lib/python2.7/site-packages/sage/interfaces/polymake.py", line 632, in set
72        self.eval(cmd)
73      File "/opt/sage/local/lib/python2.7/site-packages/sage/interfaces/expect.py", line 1300, in eval
74        for L in code.split('\n') if L != ''])
75      File "/opt/sage/local/lib/python2.7/site-packages/sage/interfaces/polymake.py", line 882, in _eval_line
76        raise PolymakeError(e)
77    TypeError: Can't locate object method "GENERATORS" via package "Polymake::polytope::Polytope__Rational::_prop_GROUP" at input line 1.
78**********************************************************************
79File "src/sage/interfaces/polymake.py", line 658, in sage.interfaces.polymake.Polymake.help
80Failed example:
81    print polymake.help('Polytope', pager=False)          # optional - polymake
82Expected:
83    objects/Polytope:
84     Not necessarily bounded or unbounded polyhedron...
85     Nonetheless, the name "Polytope" is used ...
86    ...
87Got:
88    objects/Polytope:
89     Not necessarily bounded convex polyhedron, i.e., the feasible region of a linear program.
90     Nonetheless, the name "Polytope" is used for two reasons: Firstly, as far as the combinatorics
91     is concerned we always deal with polytopes; see the description of VERTICES_IN_FACETS for details.
92     Note that a pointed polyhedron is projectively equivalent to a polytope.
93     The second reason is historical.
94     We use homogeneous coordinates, which is why Polytope is derived from Cone.
95     Scalar is the numeric data type used for the coordinates.
96    <BLANKLINE>
97    Examples:
98    <BLANKLINE>
99    *) To construct a polytope as the convex hull of three points in the plane use
100        > $p=new Polytope(POINTS=>[[1,0,0],[1,1,0],[1,0,1]]);
101        > print $p->N_FACETS
102        3
103       Note that homogeneous coordinates are used throughout.
104    *) Many standard constructions are available directly.  For instance, to get a regular 120-cell (which is 4-dimensional) use:
105        > $c=regular_120_cell();
106        > print $c->VOLUME;
107        1575+705r5
108       This is the exact volume 1575+705*\sqrt{5}.
109       polymake has limited support for polytopes with non-rational coordinates.
110    <BLANKLINE>
111**********************************************************************
112File "src/sage/interfaces/polymake.py", line 1442, in sage.interfaces.polymake.PolymakeElement.__getattr__
113Failed example:
114    s.get_schedule('F_VECTOR')            # optional - polymake
115Expected:
116    CONE_DIM...
117    ...
118    BOUNDED : VERTICES | POINTS, POINTED
119    precondition : BOUNDED ( lrs.convex_hull.count: N_FACETS : RAYS | INPUT_RAYS )
120    lrs.convex_hull.count: N_FACETS : RAYS | INPUT_RAYS
121    ...
122    COMBINATORIAL_DIM : CONE_DIM, LINEALITY_DIM
123    precondition : COMBINATORIAL_DIM ( F_VECTOR : N_FACETS, N_RAYS, COMBINATORIAL_DIM )
124    F_VECTOR : N_FACETS, N_RAYS, COMBINATORIAL_DIM
125Got:
126    LINEAR_SPAN : RAYS | INPUT_RAYS
127    POINTED : RAYS
128    BOUNDED : VERTICES | POINTS, POINTED
129    precondition : BOUNDED ( lrs.convex_hull.count: N_FACETS : RAYS | INPUT_RAYS )
130    lrs.convex_hull.count: N_FACETS : RAYS | INPUT_RAYS
131    precondition : POINTED ( LINEALITY_DIM, LINEALITY_SPACE : CONE_AMBIENT_DIM )
132    LINEALITY_DIM, LINEALITY_SPACE : CONE_AMBIENT_DIM
133    CONE_DIM : CONE_AMBIENT_DIM, LINEAR_SPAN
134    COMBINATORIAL_DIM : CONE_DIM, LINEALITY_DIM
135    precondition : COMBINATORIAL_DIM ( F_VECTOR : N_FACETS, N_RAYS, COMBINATORIAL_DIM )
136    F_VECTOR : N_FACETS, N_RAYS, COMBINATORIAL_DIM
137**********************************************************************
138File "src/sage/interfaces/polymake.py", line 1627, in sage.interfaces.polymake.PolymakeElement._sage_doc_
139Failed example:
140    print c._sage_doc_()                  # optional - polymake
141Expected:
142    objects/Polytope:
143     Not necessarily bounded or unbounded polyhedron...
144     Nonetheless, the name "Polytope" is used ...
145    ...
146    <BLANKLINE>
147    objects/Polytope/specializations/Polytope<Rational>:
148     A rational polyhedron realized in Q^d
149Got:
150    objects/Polytope:
151     Not necessarily bounded convex polyhedron, i.e., the feasible region of a linear program.
152     Nonetheless, the name "Polytope" is used for two reasons: Firstly, as far as the combinatorics
153     is concerned we always deal with polytopes; see the description of VERTICES_IN_FACETS for details.
154     Note that a pointed polyhedron is projectively equivalent to a polytope.
155     The second reason is historical.
156     We use homogeneous coordinates, which is why Polytope is derived from Cone.
157     Scalar is the numeric data type used for the coordinates.
158    <BLANKLINE>
159    Examples:
160    <BLANKLINE>
161    *) To construct a polytope as the convex hull of three points in the plane use
162        > $p=new Polytope(POINTS=>[[1,0,0],[1,1,0],[1,0,1]]);
163        > print $p->N_FACETS
164        3
165       Note that homogeneous coordinates are used throughout.
166    *) Many standard constructions are available directly.  For instance, to get a regular 120-cell (which is 4-dimensional) use:
167        > $c=regular_120_cell();
168        > print $c->VOLUME;
169        1575+705r5
170       This is the exact volume 1575+705*\sqrt{5}.
171       polymake has limited support for polytopes with non-rational coordinates.
172    <BLANKLINE>
173    objects/Polytope/specializations/Polytope<Rational>:
174     A rational polyhedron realized in Q^d
175    <BLANKLINE>
176**********************************************************************
177File "src/sage/interfaces/polymake.py", line 1777, in sage.interfaces.polymake.PolymakeFunctionElement._sage_doc_
178Failed example:
179    print p.minkowski_sum_fukuda._sage_doc_()         # optional - polymake
180Expected:
181    functions/Producing a polytope from polytopes/minkowski_sum_fukuda:
182    minkowski_sum_fukuda(summands) -> Polytope<Scalar>
183    <BLANKLINE>
184     Computes the (VERTICES of the) Minkowski sum of a list of polytopes using the algorithm by Fukuda described in
185           Komei Fukuda, From the zonotope construction to the Minkowski addition of convex polytopes, J. Symbolic Comput., 38(4):1261-1272, 2004.
186    <BLANKLINE>
187    Arguments:
188      Array<Polytope<Scalar>> summands
189    <BLANKLINE>
190    Returns Polytope<Scalar>
191    <BLANKLINE>
192    Example:
193        > $p = minkowski_sum_fukuda([cube(2),simplex(2),cross(2)]);
194        > print $p->VERTICES;
195        1 -2 -1
196        1 -1 -2
197        1 3 -1
198        1 3 1
199        1 2 -2
200        1 -2 2
201        1 -1 3
202        1 1 3
203Got:
204    functions/Producing a polytope from polytopes/minkowski_sum_fukuda:
205    minkowski_sum_fukuda(summands) -> Polytope<Scalar>
206    <BLANKLINE>
207     Computes the (VERTICES of the) Minkowski sum of a list of polytopes using the algorithm by Fukuda described in
208           Komei Fukuda, From the zonotope construction to the Minkowski addition of convex polytopes, J. Symbolic Comput., 38(4):1261-1272, 2004.
209    <BLANKLINE>
210    Arguments:
211      Array<Polytope<Scalar>> summands
212    <BLANKLINE>
213    Returns Polytope<Scalar>
214    <BLANKLINE>
215    Example:
216    <BLANKLINE>
217        > $p = minkowski_sum_fukuda([cube(2),simplex(2),cross(2)]);
218        > print $p->VERTICES;
219        1 3 -1
220        1 3 1
221        1 -1 -2
222        1 1 3
223        1 -1 3
224        1 2 -2
225        1 -2 2
226        1 -2 -1
227    <BLANKLINE>
228**********************************************************************
2296 items had failures:
230   1 of   7 in sage.interfaces.polymake.Polymake._function_call_string
231   1 of   4 in sage.interfaces.polymake.Polymake._function_element_class
232   1 of   4 in sage.interfaces.polymake.Polymake.help
233   1 of  12 in sage.interfaces.polymake.PolymakeElement.__getattr__
234   1 of   4 in sage.interfaces.polymake.PolymakeElement._sage_doc_
235   1 of   4 in sage.interfaces.polymake.PolymakeFunctionElement._sage_doc_
236    [192 tests, 6 failures, 19.96 s]
237----------------------------------------------------------------------
238sage -t --long src/sage/interfaces/polymake.py  # 6 doctests failed
239----------------------------------------------------------------------
240Total time for all tests: 24.0 seconds
241    cpu time: 1.1 seconds
242    cumulative wall time: 20.0 seconds