# Ticket #22452: 22452-doctest.log

File 22452-doctest.log, 19.0 KB (added by , 4 years ago) |
---|

Line | |
---|---|

1 | too few successful tests, not using stored timings |

2 | Running doctests with ID 2017-03-10-17-08-26-7151b63a. |

3 | Git branch: u/SimonKing/create_a_polymake_pexpect_interface |

4 | Using --optional=polymake,sage |

5 | Doctesting 1 file. |

6 | sage -t --long polymake.py |

7 | ********************************************************************** |

8 | File "polymake.py", line 120, in sage.interfaces.polymake.Polymake |

9 | Failed example: |

10 | p # optional - polymake |

11 | Expected: |

12 | Random spherical polytope of dimension 4; seed=5 |

13 | Got: |

14 | Random spherical polytope of dimension 4; seed=5; precision=default |

15 | ********************************************************************** |

16 | File "polymake.py", line 180, in sage.interfaces.polymake.Polymake.version |

17 | Failed example: |

18 | polymake.version() # optional - polymake |

19 | Expected: |

20 | '3.0' |

21 | Got: |

22 | '3.0.6' |

23 | ********************************************************************** |

24 | File "polymake.py", line 222, in sage.interfaces.polymake.Polymake._function_element_class |

25 | Failed example: |

26 | p.get_schedule('F_VECTOR') # optional - polymake |

27 | Expected: |

28 | CONE_DIM : RAYS | INPUT_RAYS |

29 | precondition : BOUNDED ( POINTED : ) |

30 | POINTED : |

31 | N_INPUT_RAYS : INPUT_RAYS |

32 | precondition : N_RAYS | N_INPUT_RAYS ( ppl.convex_hull.primal: FACETS, LINEAR_SPAN : RAYS | INPUT_RAYS ) |

33 | sensitivity check for FacetPerm |

34 | ppl.convex_hull.primal: FACETS, LINEAR_SPAN : RAYS | INPUT_RAYS |

35 | INPUT_RAYS_IN_FACETS : INPUT_RAYS, FACETS |

36 | sensitivity check for VertexPerm |

37 | RAYS_IN_FACETS, RAYS, LINEALITY_SPACE : INPUT_RAYS_IN_FACETS, INPUT_RAYS |

38 | GRAPH.ADJACENCY : RAYS_IN_FACETS |

39 | DUAL_GRAPH.ADJACENCY : RAYS_IN_FACETS |

40 | N_EDGES : ADJACENCY ( applied to GRAPH ) |

41 | N_EDGES : ADJACENCY ( applied to DUAL_GRAPH ) |

42 | precondition : POINTED ( LINEALITY_DIM, LINEALITY_SPACE : ) |

43 | LINEALITY_DIM, LINEALITY_SPACE : |

44 | COMBINATORIAL_DIM : CONE_DIM, LINEALITY_DIM |

45 | N_RAYS : RAYS |

46 | N_FACETS : FACETS |

47 | precondition : COMBINATORIAL_DIM ( F_VECTOR : N_FACETS, N_RAYS, GRAPH.N_EDGES, DUAL_GRAPH.N_EDGES, COMBINATORIAL_DIM ) |

48 | F_VECTOR : N_FACETS, N_RAYS, GRAPH.N_EDGES, DUAL_GRAPH.N_EDGES, COMBINATORIAL_DIM |

49 | Got: |

50 | CONE_DIM : RAYS | INPUT_RAYS |

51 | precondition : BOUNDED ( POINTED : ) |

52 | POINTED : |

53 | precondition : POINTED ( LINEALITY_DIM, LINEALITY_SPACE : CONE_AMBIENT_DIM ) |

54 | LINEALITY_DIM, LINEALITY_SPACE : CONE_AMBIENT_DIM |

55 | COMBINATORIAL_DIM : CONE_DIM, LINEALITY_DIM |

56 | N_INPUT_RAYS : INPUT_RAYS |

57 | precondition : N_RAYS | N_INPUT_RAYS ( ppl.convex_hull.primal: FACETS, LINEAR_SPAN : RAYS | INPUT_RAYS ) |

58 | sensitivity check for FacetPerm |

59 | ppl.convex_hull.primal: FACETS, LINEAR_SPAN : RAYS | INPUT_RAYS |

60 | INPUT_RAYS_IN_FACETS : INPUT_RAYS, FACETS |

61 | sensitivity check for VertexPerm |

62 | RAYS_IN_FACETS, RAYS, LINEALITY_SPACE : INPUT_RAYS_IN_FACETS, INPUT_RAYS |

63 | GRAPH.ADJACENCY : RAYS_IN_FACETS |

64 | DUAL_GRAPH.ADJACENCY : RAYS_IN_FACETS |

65 | N_EDGES : ADJACENCY ( applied to GRAPH ) |

66 | N_EDGES : ADJACENCY ( applied to DUAL_GRAPH ) |

67 | N_FACETS : FACETS |

68 | N_RAYS : RAYS |

69 | precondition : COMBINATORIAL_DIM ( F_VECTOR : N_FACETS, N_RAYS, GRAPH.N_EDGES, DUAL_GRAPH.N_EDGES, COMBINATORIAL_DIM ) |

70 | F_VECTOR : N_FACETS, N_RAYS, GRAPH.N_EDGES, DUAL_GRAPH.N_EDGES, COMBINATORIAL_DIM |

71 | ********************************************************************** |

72 | File "polymake.py", line 252, in sage.interfaces.polymake.Polymake.function_call |

73 | Failed example: |

74 | polymake.rand_sphere(4,30, seed=15) # optional - polymake # indirect doctest |

75 | Expected: |

76 | Random spherical polytope of dimension 4; seed=15 |

77 | Got: |

78 | Random spherical polytope of dimension 4; seed=15; precision=default |

79 | ********************************************************************** |

80 | File "polymake.py", line 278, in sage.interfaces.polymake.Polymake._function_call_string |

81 | Failed example: |

82 | c.GROUP # optional - polymake |

83 | Expected: |

84 | full combinatorial group on facets of 2-dim cube |

85 | Got: |

86 | full combinatorial group on facets |

87 | ********************************************************************** |

88 | File "polymake.py", line 280, in sage.interfaces.polymake.Polymake._function_call_string |

89 | Failed example: |

90 | c.GROUP.GENERATORS # optional - polymake |

91 | Expected: |

92 | 1 0 2 3 |

93 | 2 3 0 1 |

94 | Got: |

95 | Member function 'GENERATORS' of Polymake::polytope::Polytope__Rational::_prop_GROUP object |

96 | ********************************************************************** |

97 | File "polymake.py", line 643, in sage.interfaces.polymake.Polymake.help |

98 | Failed example: |

99 | print polymake.help('Polytope', pager=False) # optional - polymake |

100 | Expected: |

101 | objects/Polytope: |

102 | Not necessarily bounded or unbounded polyhedron. |

103 | Nonetheless, the name "Polytope" is used for two reasons: |

104 | Firstly, combinatorially we always deal with polytopes; see the description of VERTICES_IN_FACETS for details. |

105 | The second reason is historical. |

106 | We use homogeneous coordinates, which is why Polytope is derived from Cone. |

107 | Note that a pointed polyhedron is projectively equivalent to a polytope. |

108 | Scalar is the numeric data type used for the coordinates. |

109 | Got: |

110 | objects/Polytope: |

111 | Not necessarily bounded convex polyhedron, i.e., the feasible region of a linear program. |

112 | Nonetheless, the name "Polytope" is used for two reasons: Firstly, as far as the combinatorics |

113 | is concerned we always deal with polytopes; see the description of VERTICES_IN_FACETS for details. |

114 | Note that a pointed polyhedron is projectively equivalent to a polytope. |

115 | The second reason is historical. |

116 | We use homogeneous coordinates, which is why Polytope is derived from Cone. |

117 | Scalar is the numeric data type used for the coordinates. |

118 | <BLANKLINE> |

119 | Examples: |

120 | <BLANKLINE> |

121 | *) To construct a polytope as the convex hull of three points in the plane use |

122 | > $p=new Polytope(POINTS=>[[1,0,0],[1,1,0],[1,0,1]]); |

123 | > print $p->N_FACETS |

124 | 3 |

125 | Note that homogeneous coordinates are used throughout. |

126 | *) Many standard constructions are available directly. For instance, to get a regular 120-cell (which is 4-dimensional) use: |

127 | > $c=regular_120_cell(); |

128 | > print $c->VOLUME; |

129 | 1575+705r5 |

130 | This is the exact volume 1575+705*\sqrt{5}. |

131 | polymake has limited support for polytopes with non-rational coordinates. |

132 | <BLANKLINE> |

133 | ********************************************************************** |

134 | File "polymake.py", line 1026, in sage.interfaces.polymake.PolymakeElement |

135 | Failed example: |

136 | p # optional - polymake |

137 | Expected: |

138 | Random spherical polytope of dimension 4; seed=5 |

139 | Got: |

140 | Random spherical polytope of dimension 4; seed=5; precision=default |

141 | ********************************************************************** |

142 | File "polymake.py", line 1046, in sage.interfaces.polymake.PolymakeElement._repr_ |

143 | Failed example: |

144 | p # optional - polymake |

145 | Expected: |

146 | Random spherical polytope of dimension 3; seed=15 |

147 | Got: |

148 | Random spherical polytope of dimension 3; seed=15; precision=default |

149 | ********************************************************************** |

150 | File "polymake.py", line 1219, in sage.interfaces.polymake.PolymakeElement.known_properties |

151 | Failed example: |

152 | c.known_properties() # optional - polymake |

153 | Expected: |

154 | ['AFFINE_HULL', |

155 | 'BOUNDED', |

156 | 'CONE_AMBIENT_DIM', |

157 | 'CONE_DIM', |

158 | 'FACETS', |

159 | 'FEASIBLE', |

160 | 'VERTICES_IN_FACETS'] |

161 | Got: |

162 | ['AFFINE_HULL', |

163 | 'BOUNDED', |

164 | 'CONE_AMBIENT_DIM', |

165 | 'CONE_DIM', |

166 | 'FACETS', |

167 | 'VERTICES_IN_FACETS'] |

168 | ********************************************************************** |

169 | File "polymake.py", line 1227, in sage.interfaces.polymake.PolymakeElement.known_properties |

170 | Failed example: |

171 | c.list_properties() # optional - polymake |

172 | Expected: |

173 | CONE_AMBIENT_DIM, CONE_DIM, FACETS, AFFINE_HULL, VERTICES_IN_FACETS, |

174 | BOUNDED, FEASIBLE |

175 | Got: |

176 | CONE_AMBIENT_DIM, CONE_DIM, FACETS, AFFINE_HULL, VERTICES_IN_FACETS, BOUNDED |

177 | ********************************************************************** |

178 | File "polymake.py", line 1275, in sage.interfaces.polymake.PolymakeElement._member_list |

179 | Failed example: |

180 | c._member_list() # optional - polymake |

181 | Expected: |

182 | ['AFFINE_HULL', |

183 | 'ALTSHULER_DET', |

184 | 'BALANCE', |

185 | 'BALANCED', |

186 | ... |

187 | 'VERTICES_IN_INEQUALITIES', |

188 | 'VERY_AMPLE', |

189 | 'VIF_CYCLIC_NORMAL', |

190 | 'VOLUME', |

191 | 'VertexPerm', |

192 | 'WEAKLY_CENTERED', |

193 | 'ZONOTOPE_INPUT_POINTS'] |

194 | Got: |

195 | ['AFFINE_HULL', |

196 | 'ALTSHULER_DET', |

197 | 'BALANCE', |

198 | 'BALANCED', |

199 | 'BOUNDARY_LATTICE_POINTS', |

200 | 'BOUNDED', |

201 | 'BOUNDED_COMPLEX', |

202 | 'CANONICAL', |

203 | 'CD_INDEX_COEFFICIENTS', |

204 | 'CENTERED', |

205 | 'CENTERED_ZONOTOPE', |

206 | 'CENTRALLY_SYMMETRIC', |

207 | 'CENTROID', |

208 | 'CHIROTOPE', |

209 | 'COCIRCUIT_EQUATIONS', |

210 | 'COCUBICAL', |

211 | 'COCUBICALITY', |

212 | 'COMBINATORIAL_DIM', |

213 | 'COMPLEXITY', |

214 | 'COMPRESSED', |

215 | 'CONE_AMBIENT_DIM', |

216 | 'CONE_DIM', |

217 | 'COORDINATE_LABELS', |

218 | 'CS_PERMUTATION', |

219 | 'CUBICAL', |

220 | 'CUBICALITY', |

221 | 'CUBICAL_H_VECTOR', |

222 | 'DEGREE_ONE_GENERATORS', |

223 | 'DUAL_BOUNDED_H_VECTOR', |

224 | 'DUAL_GRAPH', |

225 | 'DUAL_H_VECTOR', |

226 | 'EDGE_ORIENTABLE', |

227 | 'EDGE_ORIENTATION', |

228 | 'EHRHART_POLYNOMIAL_COEFF', |

229 | 'EQUATIONS', |

230 | 'EXCESS_RAY_DEGREE', |

231 | 'EXCESS_VERTEX_DEGREE', |

232 | 'F2_VECTOR', |

233 | 'FACETS', |

234 | 'FACETS_THRU_INPUT_RAYS', |

235 | 'FACETS_THRU_POINTS', |

236 | 'FACETS_THRU_RAYS', |

237 | 'FACETS_THRU_VERTICES', |

238 | 'FACET_LABELS', |

239 | 'FACET_SIZES', |

240 | 'FACET_VERTEX_LATTICE_DISTANCES', |

241 | 'FACET_WIDTH', |

242 | 'FACET_WIDTHS', |

243 | 'FACE_SIMPLICITY', |

244 | 'FAR_FACE', |

245 | 'FAR_HYPERPLANE', |

246 | 'FATNESS', |

247 | 'FEASIBLE', |

248 | 'FLAG_VECTOR', |

249 | 'FOLDABLE_COCIRCUIT_EQUATIONS', |

250 | 'FOLDABLE_MAX_SIGNATURE_UPPER_BOUND', |

251 | 'FTR_CYCLIC_NORMAL', |

252 | 'FTV_CYCLIC_NORMAL', |

253 | 'FULL_DIM', |

254 | 'F_VECTOR', |

255 | 'FacetPerm', |

256 | 'FacetPerm.pure', |

257 | 'GALE_TRANSFORM', |

258 | 'GALE_VERTICES', |

259 | 'GORENSTEIN', |

260 | 'GORENSTEIN_CONE', |

261 | 'GORENSTEIN_INDEX', |

262 | 'GORENSTEIN_VECTOR', |

263 | 'GRAPH', |

264 | 'GROEBNER_BASIS', |

265 | 'GROUP', |

266 | 'G_VECTOR', |

267 | 'HASSE_DIAGRAM', |

268 | 'HILBERT_BASIS_GENERATORS', |

269 | 'HILBERT_SERIES', |

270 | 'HOMOGENEOUS', |

271 | 'H_STAR_VECTOR', |

272 | 'H_VECTOR', |

273 | 'INEQUALITIES', |

274 | 'INEQUALITIES_THRU_RAYS', |

275 | 'INEQUALITIES_THRU_VERTICES', |

276 | 'INPUT_LINEALITY', |

277 | 'INPUT_RAYS', |

278 | 'INPUT_RAYS_IN_FACETS', |

279 | 'INPUT_RAY_LABELS', |

280 | 'INTERIOR_LATTICE_POINTS', |

281 | 'LATTICE', |

282 | 'LATTICE_BASIS', |

283 | 'LATTICE_CODEGREE', |

284 | 'LATTICE_DEGREE', |

285 | 'LATTICE_EMPTY', |

286 | 'LATTICE_POINTS_GENERATORS', |

287 | 'LATTICE_VOLUME', |

288 | 'LATTICE_WIDTH', |

289 | 'LATTICE_WIDTH_DIRECTION', |

290 | 'LINEALITY_DIM', |

291 | 'LINEALITY_SPACE', |

292 | 'LINEAR_SPAN', |

293 | 'LP', |

294 | 'MAX_INTERIOR_SIMPLICES', |

295 | 'MINIMAL_NON_FACES', |

296 | 'MINIMAL_VERTEX_ANGLE', |

297 | 'MINKOWSKI_CONE', |

298 | 'MOEBIUS_STRIP_EDGES', |

299 | 'MOEBIUS_STRIP_QUADS', |

300 | 'MONOID_GRADING', |

301 | 'NEIGHBORLINESS', |

302 | 'NEIGHBORLY', |

303 | 'NEIGHBOR_RAYS_CYCLIC_NORMAL', |

304 | 'NEIGHBOR_VERTICES_CYCLIC_NORMAL', |

305 | 'NORMAL', |

306 | 'N_01POINTS', |

307 | 'N_BOUNDARY_LATTICE_POINTS', |

308 | 'N_BOUNDED_VERTICES', |

309 | 'N_FACETS', |

310 | 'N_HILBERT_BASIS', |

311 | 'N_INPUT_RAYS', |

312 | 'N_INTERIOR_LATTICE_POINTS', |

313 | 'N_LATTICE_POINTS', |

314 | 'N_POINTS', |

315 | 'N_RAYS', |

316 | 'N_RAY_FACET_INC', |

317 | 'N_VERTEX_FACET_INC', |

318 | 'N_VERTICES', |

319 | 'ONE_RAY', |

320 | 'ONE_VERTEX', |

321 | 'POINTED', |

322 | 'POINTS', |

323 | 'POINTS_IN_FACETS', |

324 | 'POINT_LABELS', |

325 | 'POLAR_SMOOTH', |

326 | 'POLYTOPAL_SUBDIVISION', |

327 | 'QUOTIENT_SPACE', |

328 | 'Q_GORENSTEIN_CONE', |

329 | 'Q_GORENSTEIN_CONE_INDEX', |

330 | 'RAYS', |

331 | 'RAYS_IN_FACETS', |

332 | 'RAYS_IN_INEQUALITIES', |

333 | 'RAY_LABELS', |

334 | 'RAY_SEPARATORS', |

335 | 'RAY_SIZES', |

336 | 'REFLEXIVE', |

337 | 'RELATIVE_VOLUME', |

338 | 'REL_INT_POINT', |

339 | 'RIF_CYCLIC_NORMAL', |

340 | 'SCHLEGEL_DIAGRAM', |

341 | 'SIMPLE', |

342 | 'SIMPLEXITY_LOWER_BOUND', |

343 | 'SIMPLE_POLYHEDRON', |

344 | 'SIMPLICIAL', |

345 | 'SIMPLICIALITY', |

346 | 'SIMPLICIAL_CONE', |

347 | 'SIMPLICITY', |

348 | 'SMOOTH', |

349 | 'SMOOTH_CONE', |

350 | 'SPECIAL_FACETS', |

351 | 'SPLITS', |

352 | 'SPLIT_COMPATIBILITY_GRAPH', |

353 | 'SQUARED_RELATIVE_VOLUMES', |

354 | 'STEINER_POINT', |

355 | 'STEINER_POINTS', |

356 | 'SUBRIDGE_SIZES', |

357 | 'TERMINAL', |

358 | 'TILING_LATTICE', |

359 | 'TORIC_IDEAL', |

360 | 'TOWARDS_FAR_FACE', |

361 | 'TRIANGULATION', |

362 | 'TRIANGULATION_INT', |

363 | 'TWO_FACE_SIZES', |

364 | 'UNBOUNDED_FACETS', |

365 | 'VALID_POINT', |

366 | 'VERTEX_BARYCENTER', |

367 | 'VERTEX_LABELS', |

368 | 'VERTEX_NORMALS', |

369 | 'VERTEX_SIZES', |

370 | 'VERTICES', |

371 | 'VERTICES_IN_FACETS', |

372 | 'VERTICES_IN_INEQUALITIES', |

373 | 'VERY_AMPLE', |

374 | 'VIF_CYCLIC_NORMAL', |

375 | 'VOLUME', |

376 | 'VertexPerm', |

377 | 'VertexPerm.pure', |

378 | 'WEAKLY_CENTERED', |

379 | 'ZONOTOPE_INPUT_POINTS'] |

380 | ********************************************************************** |

381 | File "polymake.py", line 1434, in sage.interfaces.polymake.PolymakeElement.__getattr__ |

382 | Failed example: |

383 | s.get_schedule('F_VECTOR') # optional - polymake |

384 | Expected: |

385 | CONE_DIM : RAYS | INPUT_RAYS |

386 | POINTED : RAYS |

387 | BOUNDED : VERTICES | POINTS, POINTED |

388 | precondition : BOUNDED ( lrs.convex_hull.count: N_FACETS : RAYS | INPUT_RAYS ) |

389 | lrs.convex_hull.count: N_FACETS : RAYS | INPUT_RAYS |

390 | LINEALITY_DIM : LINEALITY_SPACE |

391 | COMBINATORIAL_DIM : CONE_DIM, LINEALITY_DIM |

392 | precondition : COMBINATORIAL_DIM ( F_VECTOR : N_FACETS, N_RAYS, COMBINATORIAL_DIM ) |

393 | F_VECTOR : N_FACETS, N_RAYS, COMBINATORIAL_DIM |

394 | Got: |

395 | LINEAR_SPAN : RAYS | INPUT_RAYS |

396 | POINTED : RAYS |

397 | BOUNDED : VERTICES | POINTS, POINTED |

398 | precondition : BOUNDED ( lrs.convex_hull.count: N_FACETS : RAYS | INPUT_RAYS ) |

399 | lrs.convex_hull.count: N_FACETS : RAYS | INPUT_RAYS |

400 | precondition : POINTED ( LINEALITY_DIM, LINEALITY_SPACE : CONE_AMBIENT_DIM ) |

401 | LINEALITY_DIM, LINEALITY_SPACE : CONE_AMBIENT_DIM |

402 | CONE_DIM : CONE_AMBIENT_DIM, LINEAR_SPAN |

403 | COMBINATORIAL_DIM : CONE_DIM, LINEALITY_DIM |

404 | precondition : COMBINATORIAL_DIM ( F_VECTOR : N_FACETS, N_RAYS, COMBINATORIAL_DIM ) |

405 | F_VECTOR : N_FACETS, N_RAYS, COMBINATORIAL_DIM |

406 | ********************************************************************** |

407 | File "polymake.py", line 1619, in sage.interfaces.polymake.PolymakeElement._sage_doc_ |

408 | Failed example: |

409 | print c._sage_doc_() # optional - polymake |

410 | Expected: |

411 | objects/Polytope: |

412 | Not necessarily bounded or unbounded polyhedron. |

413 | Nonetheless, the name "Polytope" is used for two reasons: |

414 | Firstly, combinatorially we always deal with polytopes; see the description of VERTICES_IN_FACETS for details. |

415 | The second reason is historical. |

416 | We use homogeneous coordinates, which is why Polytope is derived from Cone. |

417 | Note that a pointed polyhedron is projectively equivalent to a polytope. |

418 | Scalar is the numeric data type used for the coordinates. |

419 | <BLANKLINE> |

420 | objects/Polytope/specializations/Polytope<Rational>: |

421 | A rational polyhedron realized in Q^d |

422 | Got: |

423 | objects/Polytope: |

424 | Not necessarily bounded convex polyhedron, i.e., the feasible region of a linear program. |

425 | Nonetheless, the name "Polytope" is used for two reasons: Firstly, as far as the combinatorics |

426 | is concerned we always deal with polytopes; see the description of VERTICES_IN_FACETS for details. |

427 | Note that a pointed polyhedron is projectively equivalent to a polytope. |

428 | The second reason is historical. |

429 | We use homogeneous coordinates, which is why Polytope is derived from Cone. |

430 | Scalar is the numeric data type used for the coordinates. |

431 | <BLANKLINE> |

432 | Examples: |

433 | <BLANKLINE> |

434 | *) To construct a polytope as the convex hull of three points in the plane use |

435 | > $p=new Polytope(POINTS=>[[1,0,0],[1,1,0],[1,0,1]]); |

436 | > print $p->N_FACETS |

437 | 3 |

438 | Note that homogeneous coordinates are used throughout. |

439 | *) Many standard constructions are available directly. For instance, to get a regular 120-cell (which is 4-dimensional) use: |

440 | > $c=regular_120_cell(); |

441 | > print $c->VOLUME; |

442 | 1575+705r5 |

443 | This is the exact volume 1575+705*\sqrt{5}. |

444 | polymake has limited support for polytopes with non-rational coordinates. |

445 | <BLANKLINE> |

446 | objects/Polytope/specializations/Polytope<Rational>: |

447 | A rational polyhedron realized in Q^d |

448 | <BLANKLINE> |

449 | ********************************************************************** |

450 | File "polymake.py", line 1765, in sage.interfaces.polymake.PolymakeFunctionElement._sage_doc_ |

451 | Failed example: |

452 | print p.get_schedule._sage_doc_() # optional - polymake |

453 | Expected: |

454 | objects/Core::Object/methods/get_schedule: |

455 | get_schedule(request; ... ) -> Core::RuleChain |

456 | ... |

457 | Arguments: |

458 | String request : name of a property with optional alternatives or a property path in dotted notation. |

459 | Several requests may be listed. |

460 | <BLANKLINE> |

461 | Returns Core::RuleChain |

462 | Got: |

463 | objects/Core::Object/methods/get_schedule: |

464 | get_schedule(request; ... ) -> Core::RuleChain |

465 | <BLANKLINE> |

466 | Compose an optimal chain of production rules providing all requested properties. |

467 | The returned RuleChain object can be applied to the original object as well as to any other object |

468 | with the same initial set of properties. If no feasible rule chain exists, `undef' is returned. |

469 | <BLANKLINE> |

470 | To watch the rule scheduler at work, e.g. to see announcements about tried preconditions, |

471 | you may temporarily increase the verbosity levels $Verbose::rules and $Verbose::scheduler. |

472 | <BLANKLINE> |

473 | Arguments: |

474 | String request : name of a property with optional alternatives or a property path in dotted notation. |

475 | Several requests may be listed. |

476 | <BLANKLINE> |

477 | Returns Core::RuleChain |

478 | <BLANKLINE> |

479 | Example: |

480 | <BLANKLINE> |

481 | generate an optimal rule chain for a parameterized family of polytopes: |

482 | > @p=map { new Polytope("POINTS" => my_matrix($_) ) } 1..10; |

483 | > $s=$p[0]->get_schedule("FACETS", "TRIANGULATION.FACETS"); |

484 | > $s->apply($_) for @p; |

485 | <BLANKLINE> |

486 | ********************************************************************** |

487 | 13 items had failures: |

488 | 1 of 8 in sage.interfaces.polymake.Polymake |

489 | 2 of 6 in sage.interfaces.polymake.Polymake._function_call_string |

490 | 1 of 4 in sage.interfaces.polymake.Polymake._function_element_class |

491 | 1 of 2 in sage.interfaces.polymake.Polymake.function_call |

492 | 1 of 4 in sage.interfaces.polymake.Polymake.help |

493 | 1 of 2 in sage.interfaces.polymake.Polymake.version |

494 | 1 of 5 in sage.interfaces.polymake.PolymakeElement |

495 | 1 of 12 in sage.interfaces.polymake.PolymakeElement.__getattr__ |

496 | 1 of 3 in sage.interfaces.polymake.PolymakeElement._member_list |

497 | 1 of 16 in sage.interfaces.polymake.PolymakeElement._repr_ |

498 | 1 of 4 in sage.interfaces.polymake.PolymakeElement._sage_doc_ |

499 | 2 of 6 in sage.interfaces.polymake.PolymakeElement.known_properties |

500 | 1 of 4 in sage.interfaces.polymake.PolymakeFunctionElement._sage_doc_ |

501 | [188 tests, 15 failures, 22.71 s] |

502 | ---------------------------------------------------------------------- |

503 | sage -t --long polymake.py # 15 doctests failed |

504 | ---------------------------------------------------------------------- |

505 | Total time for all tests: 26.7 seconds |

506 | cpu time: 1.3 seconds |

507 | cumulative wall time: 22.7 seconds |