Ticket #15347: 15347_delete_yamanouchi.patch
File 15347_delete_yamanouchi.patch, 1.7 KB (added by , 9 years ago) |
---|
-
doc/en/reference/combinat/index.rst
# HG changeset patch # User Jeroen Demeyer <jdemeyer@cage.ugent.be> # Date 1383465267 -3600 # Node ID 85c407ad309dc20edcf2883f7f5060f634dbf71b # Parent 7f9457966a9275188112bc75db2b6e51dae41271 Delete yamanouchi.py diff --git a/doc/en/reference/combinat/index.rst b/doc/en/reference/combinat/index.rst
a b 30 30 sage/combinat/integer_vectors_mod_permgroup 31 31 sage/combinat/enumeration_mod_permgroup 32 32 sage/combinat/restricted_growth 33 sage/combinat/yamanouchi34 33 sage/combinat/yang_baxter_graph 35 34 sage/combinat/gelfand_tsetlin_patterns 36 35 sage/combinat/graph_path -
deleted file sage/combinat/yamanouchi.py
diff --git a/sage/combinat/yamanouchi.py b/sage/combinat/yamanouchi.py deleted file mode 100644
+ - 1 r"""2 Yamanouchi Words3 4 A right (respectively left) Yamanouchi word on a completely ordered5 alphabet, for instance [1,2,...,n], is a word math such that any6 right (respectively left) factor of math contains more entries math7 than math. For example, the word [2, 3, 2, 2, 1, 3, 1, 2, 1, 1] is8 a right Yamanouchi one.9 10 The evaluation of a word math encodes the number of occurrences of11 each letter of math. In the case of Yamanouchi words, the12 evaluation is a partition. For example, the word [2, 3, 2, 2, 1, 3,13 1, 2, 1, 1] has evaluation [4, 4, 2].14 15 Yamanouchi words can be useful in the computation of16 Littlewood-Richardson coefficients `c_{\lambda, \mu}^\nu`.17 According to the Littlewood-Richardson18 rule, `c_{\lambda, \mu}^\nu` is the number of skew tableaux19 of shape `\nu / \lambda` and evaluation `\mu`,20 whose row readings are Yamanouchi words.21 """22