Ticket #15347: 15347_delete_yamanouchi.patch

File 15347_delete_yamanouchi.patch, 1.7 KB (added by jdemeyer, 9 years ago)
  • doc/en/reference/combinat/index.rst

    # HG changeset patch
    # User Jeroen Demeyer <jdemeyer@cage.ugent.be>
    # Date 1383465267 -3600
    # Node ID 85c407ad309dc20edcf2883f7f5060f634dbf71b
    # Parent  7f9457966a9275188112bc75db2b6e51dae41271
    Delete yamanouchi.py
    
    diff --git a/doc/en/reference/combinat/index.rst b/doc/en/reference/combinat/index.rst
    a b  
    3030   sage/combinat/integer_vectors_mod_permgroup
    3131   sage/combinat/enumeration_mod_permgroup
    3232   sage/combinat/restricted_growth
    33    sage/combinat/yamanouchi
    3433   sage/combinat/yang_baxter_graph
    3534   sage/combinat/gelfand_tsetlin_patterns
    3635   sage/combinat/graph_path
  • deleted file sage/combinat/yamanouchi.py

    diff --git a/sage/combinat/yamanouchi.py b/sage/combinat/yamanouchi.py
    deleted file mode 100644
    + -  
    1 r"""
    2 Yamanouchi Words
    3 
    4 A right (respectively left) Yamanouchi word on a completely ordered
    5 alphabet, for instance [1,2,...,n], is a word math such that any
    6 right (respectively left) factor of math contains more entries math
    7 than math. For example, the word [2, 3, 2, 2, 1, 3, 1, 2, 1, 1] is
    8 a right Yamanouchi one.
    9 
    10 The evaluation of a word math encodes the number of occurrences of
    11 each letter of math. In the case of Yamanouchi words, the
    12 evaluation is a partition. For example, the word [2, 3, 2, 2, 1, 3,
    13 1, 2, 1, 1] has evaluation [4, 4, 2].
    14 
    15 Yamanouchi words can be useful in the computation of
    16 Littlewood-Richardson coefficients `c_{\lambda, \mu}^\nu`.
    17 According to the Littlewood-Richardson
    18 rule, `c_{\lambda, \mu}^\nu` is the number of skew tableaux
    19 of shape `\nu / \lambda` and evaluation `\mu`,
    20 whose row readings are Yamanouchi words.
    21 """
    22