| 1 | r""" |
| 2 | Steiner Quadruple Systems |
| 3 | |
| 4 | A Steiner Quadruple System on `n` points is a family `SQS_n \subset \binom {[n]} |
| 5 | 4` of `4`-sets, such that any set `S\subset [n]` of size three is a subset of |
| 6 | exactly one member of `SQS_n`. |
| 7 | |
| 8 | This module implements Haim Hanani's constructive proof that a Steiner Quadruple |
| 9 | System exists if and only if `n\equiv 2,4[12]`. Hanani's proof consists in 6 |
| 10 | different constructions that build a large Steiner Quadruple System from a smaller |
| 11 | one, and though it does not give a very clear understanding of why it works (to say the |
| 12 | least)... it does ! |
| 13 | |
| 14 | The constructions have been implemented while reading two papers simultaneously, |
| 15 | for one of them sometimes provides the informations that the other one does |
| 16 | not. The first one is Haim Hanani's original paper [Hanani60]_, and the other |
| 17 | one is a paper from Horan and Hurlbert which goes through all constructions |
| 18 | [HH12]_. |
| 19 | |
| 20 | It can be used through the ``designs`` object:: |
| 21 | |
| 22 | sage: designs.steiner_quadruple_system(8) |
| 23 | ((0, 1, 2, 3), (0, 1, 6, 7), (0, 5, 2, 7), (0, 5, 6, 3), (4, 1, 2, 7), |
| 24 | (4, 1, 6, 3), (4, 5, 2, 3), (4, 5, 6, 7), (0, 1, 4, 5), (0, 2, 4, 6), |
| 25 | (0, 3, 4, 7), (1, 2, 5, 6), (1, 3, 5, 7), (2, 3, 6, 7)) |
| 26 | |
| 27 | REFERENCES: |
| 28 | |
| 29 | .. [Hanani60] Haim Hanani, |
| 30 | On quadruple systems, |
| 31 | pages 145--157, vol. 12, |
| 32 | Canadadian Journal of Mathematics, |
| 33 | 1960 |
| 34 | http://cms.math.ca/cjm/v12/cjm1960v12.0145-0157.pdf |
| 35 | |
| 36 | .. [HH12] Victoria Horan and Glenn Hurlbert, |
| 37 | Overlap Cycles for Steiner Quadruple Systems, |
| 38 | 2012, |
| 39 | http://arxiv.org/abs/1204.3215 |
| 40 | |
| 41 | AUTHORS: |
| 42 | |
| 43 | - Nathann Cohen (May 2013, while listening to "*Le Blues Du Pauvre Delahaye*") |
| 44 | |
| 45 | Index |
| 46 | ----- |
| 47 | |
| 48 | This module's main function is the following : |
| 49 | |
| 50 | .. csv-table:: |
| 51 | :class: contentstable |
| 52 | :widths: 15, 20, 65 |
| 53 | :delim: | |
| 54 | |
| 55 | | :func:`steiner_quadruple_system` | Returns a Steiner Quadruple System on `n` points |
| 56 | |
| 57 | This function redistributes its work among 6 constructions : |
| 58 | |
| 59 | .. csv-table:: |
| 60 | :class: contentstable |
| 61 | :widths: 15, 20, 65 |
| 62 | :delim: | |
| 63 | |
| 64 | Construction `1` | :func:`two_n` | Returns a Steiner Quadruple System on `2n` points |
| 65 | Construction `2` | :func:`three_n_minus_two` | Returns a Steiner Quadruple System on `3n-2` points |
| 66 | Construction `3` | :func:`three_n_minus_height` | Returns a Steiner Quadruple System on `3n-8` points |
| 67 | Construction `4` | :func:`three_n_minus_four` | Returns a Steiner Quadruple System on `3n-4` points |
| 68 | Construction `5` | :func:`four_n_minus_six` | Returns a Steiner Quadruple System on `4n-6` points |
| 69 | Construction `6` | :func:`twelve_n_minus_ten` | Returns a Steiner Quadruple System on `12n-10` points |
| 70 | |
| 71 | It also defines two specific Steiner Quadruple Systems that the constructions |
| 72 | require, i.e.`SQS_{14}` and `SQS_{38}` as well as the systems of pairs |
| 73 | `P_{\alpha}(m)` and `\overline P_{\alpha}(m)` (see [Hanani60]_). |
| 74 | |
| 75 | Functions |
| 76 | --------- |
| 77 | """ |
| 78 | from sage.misc.cachefunc import cached_function |
| 79 | |
| 80 | # Construction 1 |
| 81 | def two_n(n,B): |
| 82 | r""" |
| 83 | Returns a Steiner Quadruple System on `2n` points. |
| 84 | |
| 85 | INPUT: |
| 86 | |
| 87 | - ``n`` (integer) |
| 88 | |
| 89 | - ``B`` -- A Steiner Quadruple System on `n` points. |
| 90 | |
| 91 | EXAMPLES:: |
| 92 | |
| 93 | sage: from sage.combinat.designs.steiner_quadruple_systems import two_n, is_steiner_quadruple_system |
| 94 | sage: for n in xrange(4, 30): |
| 95 | ....: if (n%6) in [2,4]: |
| 96 | ....: sqs = designs.steiner_quadruple_system(n) |
| 97 | ....: if not is_steiner_quadruple_system(2*n, two_n(n, sqs)): |
| 98 | ....: print "Something is wrong !" |
| 99 | |
| 100 | """ |
| 101 | Y = [] |
| 102 | |
| 103 | # Line 1 |
| 104 | for x,y,z,t in B: |
| 105 | for a in xrange(2): |
| 106 | for b in xrange(2): |
| 107 | for c in xrange(2): |
| 108 | d = (a+b+c)%2 |
| 109 | Y.append((x+a*n,y+b*n,z+c*n,t+d*n)) |
| 110 | |
| 111 | # Line 2 |
| 112 | for j in xrange(n): |
| 113 | for jj in xrange(j+1,n): |
| 114 | Y.append((j,jj,n+j,n+jj)) |
| 115 | |
| 116 | return tuple(Y) |
| 117 | |
| 118 | # Construction 2 |
| 119 | def three_n_minus_two(n,B): |
| 120 | """ |
| 121 | Returns a Steiner Quadruple System on `3n-2` points. |
| 122 | |
| 123 | INPUT: |
| 124 | |
| 125 | - ``n`` (integer) |
| 126 | |
| 127 | - ``B`` -- A Steiner Quadruple System on `n` points. |
| 128 | |
| 129 | EXAMPLES:: |
| 130 | |
| 131 | sage: from sage.combinat.designs.steiner_quadruple_systems import three_n_minus_two, is_steiner_quadruple_system |
| 132 | sage: for n in xrange(4, 30): |
| 133 | ....: if (n%6) in [2,4]: |
| 134 | ....: sqs = designs.steiner_quadruple_system(n) |
| 135 | ....: if not is_steiner_quadruple_system(3*n-2, three_n_minus_two(n, sqs)): |
| 136 | ....: print "Something is wrong !" |
| 137 | |
| 138 | """ |
| 139 | A = n-1 |
| 140 | Y = [] |
| 141 | # relabel function |
| 142 | r = lambda i,x : (i%3)*(n-1)+x |
| 143 | for x,y,z,t in B: |
| 144 | if t == A: |
| 145 | # Line 2. |
| 146 | for a in xrange(3): |
| 147 | for b in xrange(3): |
| 148 | c = -(a+b)%3 |
| 149 | Y.append((r(a,x),r(b,y),r(c,z),3*n-3)) |
| 150 | |
| 151 | # Line 3. |
| 152 | Y.extend([(r(i,x),r(i,y),r(i+1,z),r(i+2,z)) for i in xrange(3)]) |
| 153 | Y.extend([(r(i,x),r(i,z),r(i+1,y),r(i+2,y)) for i in xrange(3)]) |
| 154 | Y.extend([(r(i,y),r(i,z),r(i+1,x),r(i+2,x)) for i in xrange(3)]) |
| 155 | |
| 156 | else: |
| 157 | # Line 1. |
| 158 | for a in xrange(3): |
| 159 | for b in xrange(3): |
| 160 | for c in xrange(3): |
| 161 | d = -(a+b+c)%3 |
| 162 | Y.append((r(a,x),r(b,y),r(c,z),r(d,t))) |
| 163 | |
| 164 | # Line 4. |
| 165 | for j in xrange(n-1): |
| 166 | for jj in xrange(j+1,n-1): |
| 167 | Y.extend([(r(i,j),r(i,jj),r(i+1,j),r(i+1,jj)) for i in xrange(3)]) |
| 168 | |
| 169 | # Line 5. |
| 170 | for j in xrange(n-1): |
| 171 | Y.append((r(0,j),r(1,j),r(2,j),3*n-3)) |
| 172 | |
| 173 | Y = tuple(map(tuple,map(sorted,Y))) |
| 174 | return Y |
| 175 | |
| 176 | # Construction 3 |
| 177 | def three_n_minus_height(n, B): |
| 178 | """ |
| 179 | Returns a Steiner Quadruple System on `3n-8` points. |
| 180 | |
| 181 | INPUT: |
| 182 | |
| 183 | - ``n`` -- an integer such that `n\equiv 2[12]`. |
| 184 | |
| 185 | - ``B`` -- A Steiner Quadruple System on `n` points. |
| 186 | |
| 187 | EXAMPLES:: |
| 188 | |
| 189 | sage: from sage.combinat.designs.steiner_quadruple_systems import three_n_minus_height, is_steiner_quadruple_system |
| 190 | sage: for n in xrange(4, 30): |
| 191 | ....: if (n%12) == 2: |
| 192 | ....: sqs = designs.steiner_quadruple_system(n) |
| 193 | ....: if not is_steiner_quadruple_system(3*n-8, three_n_minus_height(n, sqs)): |
| 194 | ....: print "Something is wrong !" |
| 195 | |
| 196 | """ |
| 197 | |
| 198 | if (n%12) != 2: |
| 199 | raise ValueError("n must be equal to 2 mod 12") |
| 200 | |
| 201 | B = relabel_system(n, B) |
| 202 | r = lambda i,x : (i%3)*(n-4)+(x%(n-4)) |
| 203 | |
| 204 | # Line 1. |
| 205 | Y = [[x+2*(n-4) for x in B[0]]] |
| 206 | |
| 207 | # Line 2. |
| 208 | for s in B[1:]: |
| 209 | for i in xrange(3): |
| 210 | Y.append([r(i,x) if x<= n-5 else x+2*(n-4) for x in s]) |
| 211 | |
| 212 | |
| 213 | # Line 3. |
| 214 | for a in xrange(4): |
| 215 | for aa in xrange(n-4): |
| 216 | for aaa in xrange(n-4): |
| 217 | aaaa = -(a+aa+aaa)%(n-4) |
| 218 | Y.append((r(0,aa),r(1,aaa), r(2,aaaa),3*(n-4)+a)) |
| 219 | |
| 220 | |
| 221 | # Line 4. |
| 222 | k = (n-14)/12 |
| 223 | for i in xrange(3): |
| 224 | for b in xrange(n-4): |
| 225 | for bb in xrange(n-4): |
| 226 | bbb = -(b+bb)%(n-4) |
| 227 | for d in xrange(2*k+1): |
| 228 | Y.append((r(i+2,bbb), r(i, b+2*k+1+i*(4*k+2)-d) , r(i, b+2*k+2+i*(4*k+2)+d), r(i+1,bb))) |
| 229 | |
| 230 | |
| 231 | |
| 232 | # Line 5. |
| 233 | for i in xrange(3): |
| 234 | for alpha in xrange(4*k+2, 12*k+9): |
| 235 | for ra,sa in P(alpha,6*k+5): |
| 236 | for raa,saa in P(alpha,6*k+5): |
| 237 | Y.append(tuple(sorted((r(i,ra),r(i,sa),r(i+1,raa), r(i+1,saa))))) |
| 238 | |
| 239 | |
| 240 | Y = tuple(map(tuple,map(sorted,Y))) |
| 241 | return Y |
| 242 | |
| 243 | # Construction 4 |
| 244 | def three_n_minus_four(n, B): |
| 245 | """ |
| 246 | Returns a Steiner Quadruple System on `3n-4` points. |
| 247 | |
| 248 | INPUT: |
| 249 | |
| 250 | - ``n`` -- an integer such that `n\equiv 10[12]` |
| 251 | |
| 252 | - ``B`` -- A Steiner Quadruple System on `n` points. |
| 253 | |
| 254 | EXAMPLES:: |
| 255 | |
| 256 | sage: from sage.combinat.designs.steiner_quadruple_systems import three_n_minus_four, is_steiner_quadruple_system |
| 257 | sage: for n in xrange(4, 30): |
| 258 | ....: if n%12 == 10: |
| 259 | ....: sqs = designs.steiner_quadruple_system(n) |
| 260 | ....: if not is_steiner_quadruple_system(3*n-4, three_n_minus_four(n, sqs)): |
| 261 | ....: print "Something is wrong !" |
| 262 | |
| 263 | """ |
| 264 | if n%12 != 10: |
| 265 | raise ValueError("n must be equal to 10 mod 12") |
| 266 | |
| 267 | B = relabel_system(n, B) |
| 268 | r = lambda i,x : (i%3)*(n-2)+(x%(n-2)) |
| 269 | |
| 270 | # Line 1/2. |
| 271 | Y = [] |
| 272 | for s in B: |
| 273 | for i in xrange(3): |
| 274 | Y.append(tuple(r(i,x) if x<= n-3 else x+2*(n-2) for x in s )) |
| 275 | |
| 276 | # Line 3. |
| 277 | for a in xrange(2): |
| 278 | for aa in xrange(n-2): |
| 279 | for aaa in xrange(n-2): |
| 280 | aaaa= -(a+aa+aaa)%(n-2) |
| 281 | Y.append((r(0,aa),r(1,aaa), r(2,aaaa),3*(n-2)+a)) |
| 282 | |
| 283 | # Line 4. |
| 284 | k = (n-10)/12 |
| 285 | for i in xrange(3): |
| 286 | for b in xrange(n-2): |
| 287 | for bb in xrange(n-2): |
| 288 | bbb = -(b+bb)%(n-2) |
| 289 | for d in xrange(2*k+1): |
| 290 | Y.append((r(i+2,bbb), r(i, b+2*k+1+i*(4*k+2)-d) , r(i, b+2*k+2+i*(4*k+2)+d), r(i+1,bb))) |
| 291 | |
| 292 | # Line 5. |
| 293 | from sage.graphs.graph_coloring import round_robin |
| 294 | one_factorization = round_robin(2*(6*k+4)).edges() |
| 295 | color_classes = [[] for j in xrange(2*(6*k+4)-1)] |
| 296 | for u,v,l in one_factorization: |
| 297 | color_classes[l].append((u,v)) |
| 298 | |
| 299 | for i in xrange(3): |
| 300 | for alpha in xrange(4*k+2, 12*k+6+1): |
| 301 | for ra,sa in P(alpha, 6*k+4): |
| 302 | for raa,saa in P(alpha, 6*k+4): |
| 303 | Y.append(tuple(sorted((r(i,ra),r(i,sa),r(i+1,raa), r(i+1,saa))))) |
| 304 | |
| 305 | Y = tuple(map(tuple,map(sorted,Y))) |
| 306 | return Y |
| 307 | |
| 308 | # Construction 5 |
| 309 | def four_n_minus_six(n, B): |
| 310 | """ |
| 311 | Returns a Steiner Quadruple System on `4n-6` points. |
| 312 | |
| 313 | INPUT: |
| 314 | |
| 315 | - ``n`` (integer) |
| 316 | |
| 317 | - ``B`` -- A Steiner Quadruple System on `n` points. |
| 318 | |
| 319 | EXAMPLES:: |
| 320 | |
| 321 | sage: from sage.combinat.designs.steiner_quadruple_systems import four_n_minus_six, is_steiner_quadruple_system |
| 322 | sage: for n in xrange(4, 20): |
| 323 | ....: if (n%6) in [2,4]: |
| 324 | ....: sqs = designs.steiner_quadruple_system(n) |
| 325 | ....: if not is_steiner_quadruple_system(4*n-6, four_n_minus_six(n, sqs)): |
| 326 | ....: print "Something is wrong !" |
| 327 | |
| 328 | """ |
| 329 | |
| 330 | f = n-2 |
| 331 | r = lambda i,ii,x : (2*(i%2)+(ii%2))*(n-2)+(x)%(n-2) |
| 332 | |
| 333 | # Line 1. |
| 334 | Y = [] |
| 335 | for s in B: |
| 336 | for i in xrange(2): |
| 337 | for ii in xrange(2): |
| 338 | Y.append(tuple(r(i,ii,x) if x<= n-3 else x+3*(n-2) for x in s )) |
| 339 | |
| 340 | # Line 2/3/4/5 |
| 341 | k = f/2 |
| 342 | for l in xrange(2): |
| 343 | for eps in xrange(2): |
| 344 | for c in xrange(k): |
| 345 | for cc in xrange(k): |
| 346 | ccc = -(c+cc)%k |
| 347 | Y.append((4*(n-2)+l,r(0,0,2*c),r(0,1,2*cc-eps),r(1,eps,2*ccc+l))) |
| 348 | Y.append((4*(n-2)+l,r(0,0,2*c+1),r(0,1,2*cc-1-eps),r(1,eps,2*ccc+1-l))) |
| 349 | Y.append((4*(n-2)+l,r(1,0,2*c),r(1,1,2*cc-eps),r(0,eps,2*ccc+1-l))) |
| 350 | Y.append((4*(n-2)+l,r(1,0,2*c+1),r(1,1,2*cc-1-eps),r(0,eps,2*ccc+l))) |
| 351 | |
| 352 | # Line 6/7 |
| 353 | for h in xrange(2): |
| 354 | for eps in xrange(2): |
| 355 | for ccc in xrange(k): |
| 356 | assert len(barP(ccc,k)) == k-1 |
| 357 | for rc,sc in barP(ccc,k): |
| 358 | for c in xrange(k): |
| 359 | cc = -(c+ccc)%k |
| 360 | Y.append((r(h,0,2*c+eps),r(h,1,2*cc-eps),r(h+1,0,rc),r(h+1,0,sc))) |
| 361 | Y.append((r(h,0,2*c-1+eps),r(h,1,2*cc-eps),r(h+1,1,rc),r(h+1,1,sc))) |
| 362 | |
| 363 | |
| 364 | |
| 365 | # Line 8/9 |
| 366 | for h in xrange(2): |
| 367 | for eps in xrange(2): |
| 368 | for ccc in xrange(k): |
| 369 | for rc,sc in barP(k+ccc,k): |
| 370 | for c in xrange(k): |
| 371 | cc = -(c+ccc)%k |
| 372 | Y.append((r(h,0,2*c+eps),r(h,1,2*cc-eps),r(h+1,1,rc),r(h+1,1,sc))) |
| 373 | Y.append((r(h,0,2*c-1+eps),r(h,1,2*cc-eps),r(h+1,0,rc),r(h+1,0,sc))) |
| 374 | |
| 375 | |
| 376 | # Line 10 |
| 377 | for h in xrange(2): |
| 378 | for alpha in xrange(n-3): |
| 379 | for ra,sa in P(alpha,k): |
| 380 | for raa,saa in P(alpha,k): |
| 381 | Y.append((r(h,0,ra),r(h,0,sa),r(h,1,raa),r(h,1,saa))) |
| 382 | |
| 383 | Y = tuple(map(tuple,map(sorted,Y))) |
| 384 | return Y |
| 385 | |
| 386 | # Construction 6 |
| 387 | def twelve_n_minus_ten(n, B): |
| 388 | """ |
| 389 | Returns a Steiner Quadruple System on `12n-6` points. |
| 390 | |
| 391 | INPUT: |
| 392 | |
| 393 | - ``n`` (integer) |
| 394 | |
| 395 | - ``B`` -- A Steiner Quadruple System on `n` points. |
| 396 | |
| 397 | EXAMPLES:: |
| 398 | |
| 399 | sage: from sage.combinat.designs.steiner_quadruple_systems import twelve_n_minus_ten, is_steiner_quadruple_system |
| 400 | sage: for n in xrange(4, 15): |
| 401 | ....: if (n%6) in [2,4]: |
| 402 | ....: sqs = designs.steiner_quadruple_system(n) |
| 403 | ....: if not is_steiner_quadruple_system(12*n-10, twelve_n_minus_ten(n, sqs)): |
| 404 | ....: print "Something is wrong !" |
| 405 | |
| 406 | """ |
| 407 | |
| 408 | B14 = steiner_quadruple_system(14) |
| 409 | r = lambda i,x : i%(n-1)+(x%12)*(n-1) |
| 410 | k = n/2 |
| 411 | |
| 412 | # Line 1. |
| 413 | Y = [] |
| 414 | for s in B14: |
| 415 | for i in xrange(n-1): |
| 416 | Y.append(tuple(r(i,x) if x<= 11 else r(n-2,11)+x-11 for x in s )) |
| 417 | |
| 418 | for s in B: |
| 419 | if s[-1] == n-1: |
| 420 | u,v,w,B = s |
| 421 | dd = {0:u,1:v,2:w} |
| 422 | d = lambda x:dd[x%3] |
| 423 | for b in xrange(12): |
| 424 | for bb in xrange(12): |
| 425 | bbb = -(b+bb)%12 |
| 426 | for h in xrange(2): |
| 427 | # Line 2 |
| 428 | Y.append((r(n-2,11)+1+h,r(u,b),r(v,bb),r(w,bbb+3*h))) |
| 429 | |
| 430 | for i in xrange(3): |
| 431 | # Line 38.3 |
| 432 | Y.append(( r(d(i),b+4+i), r(d(i),b+7+i), r(d(i+1),bb), r(d(i+2),bbb))) |
| 433 | |
| 434 | for j in xrange(12): |
| 435 | for eps in xrange(2): |
| 436 | for i in xrange(3): |
| 437 | # Line 38.4-38.7 |
| 438 | Y.append(( r(d(i),j), r(d(i+1),j+6*eps ), r(d(i+2),6*eps-2*j+1), r(d(i+2),6*eps-2*j-1))) |
| 439 | Y.append(( r(d(i),j), r(d(i+1),j+6*eps ), r(d(i+2),6*eps-2*j+2), r(d(i+2),6*eps-2*j-2))) |
| 440 | Y.append(( r(d(i),j), r(d(i+1),j+6*eps-3), r(d(i+2),6*eps-2*j+1), r(d(i+2),6*eps-2*j+2))) |
| 441 | Y.append(( r(d(i),j), r(d(i+1),j+6*eps+3), r(d(i+2),6*eps-2*j-1), r(d(i+2),6*eps-2*j-2))) |
| 442 | |
| 443 | for j in xrange(6): |
| 444 | for i in xrange(3): |
| 445 | for eps in xrange(2): |
| 446 | # Line 38.8 |
| 447 | Y.append(( r(d(i),j), r(d(i),j+6), r(d(i+1),j+3*eps), r(d(i+1),j+6+3*eps))) |
| 448 | |
| 449 | for j in xrange(12): |
| 450 | for i in xrange(3): |
| 451 | for eps in xrange(4): |
| 452 | # Line 38.11 |
| 453 | Y.append(( r(d(i),j), r(d(i),j+1), r(d(i+1),j+3*eps), r(d(i+1),j+3*eps+1))) |
| 454 | # Line 38.12 |
| 455 | Y.append(( r(d(i),j), r(d(i),j+2), r(d(i+1),j+3*eps), r(d(i+1),j+3*eps+2))) |
| 456 | # Line 38.13 |
| 457 | Y.append(( r(d(i),j), r(d(i),j+4), r(d(i+1),j+3*eps), r(d(i+1),j+3*eps+4))) |
| 458 | |
| 459 | for alpha in [4,5]: |
| 460 | for ra,sa in P(alpha,6): |
| 461 | for raa,saa in P(alpha,6): |
| 462 | for i in xrange(3): |
| 463 | for ii in xrange(i+1,3): |
| 464 | # Line 38.14 |
| 465 | Y.append(( r(d(i),ra), r(d(i),sa), r(d(ii),raa), r(d(ii),saa))) |
| 466 | |
| 467 | for g in xrange(6): |
| 468 | for eps in xrange(2): |
| 469 | for i in xrange(3): |
| 470 | for ii in xrange(3): |
| 471 | if i == ii: |
| 472 | continue |
| 473 | # Line 38.9 |
| 474 | Y.append(( r(d(i),2*g+3*eps), r(d(i),2*g+6+3*eps), r(d(ii),2*g+1), r(d(ii),2*g+5))) |
| 475 | # Line 38.10 |
| 476 | Y.append(( r(d(i),2*g+3*eps), r(d(i),2*g+6+3*eps), r(d(ii),2*g+2), r(d(ii),2*g+4))) |
| 477 | |
| 478 | else: |
| 479 | x,y,z,t = s |
| 480 | for a in xrange(12): |
| 481 | for aa in xrange(12): |
| 482 | for aaa in xrange(12): |
| 483 | aaaa = -(a+aa+aaa)%12 |
| 484 | # Line 3 |
| 485 | Y.append((r(x,a), r(y,aa), r(z,aaa), r(t,aaaa))) |
| 486 | return Y |
| 487 | |
| 488 | def relabel_system(n,B): |
| 489 | r""" |
| 490 | Relabels the set so that `\{n-4, n-3, n-2, n-1\}` is in `B`. |
| 491 | |
| 492 | INPUT: |
| 493 | |
| 494 | - ``n`` -- an integer |
| 495 | |
| 496 | - ``B`` -- a list of 4-uples on `0,...,n-1`. |
| 497 | |
| 498 | EXAMPLE:: |
| 499 | |
| 500 | sage: from sage.combinat.designs.steiner_quadruple_systems import relabel_system |
| 501 | sage: designs.steiner_quadruple_system(8) |
| 502 | ((0, 1, 2, 3), (0, 1, 6, 7), (0, 5, 2, 7), (0, 5, 6, 3), (4, 1, 2, 7), |
| 503 | (4, 1, 6, 3), (4, 5, 2, 3), (4, 5, 6, 7), (0, 1, 4, 5), (0, 2, 4, 6), |
| 504 | (0, 3, 4, 7), (1, 2, 5, 6), (1, 3, 5, 7), (2, 3, 6, 7)) |
| 505 | sage: relabel_system(8,designs.steiner_quadruple_system(8)) |
| 506 | ((4, 5, 6, 7), (0, 1, 4, 5), (1, 2, 4, 6), (0, 2, 4, 7), (1, 3, 5, 6), |
| 507 | (0, 3, 5, 7), (2, 3, 6, 7), (0, 1, 2, 3), (2, 3, 4, 5), (0, 3, 4, 6), |
| 508 | (1, 3, 4, 7), (0, 2, 5, 6), (1, 2, 5, 7), (0, 1, 6, 7)) |
| 509 | """ |
| 510 | |
| 511 | label = { |
| 512 | B[0][0] : n-4, |
| 513 | B[0][1] : n-3, |
| 514 | B[0][2] : n-2, |
| 515 | B[0][3] : n-1 |
| 516 | } |
| 517 | |
| 518 | def get_label(x): |
| 519 | if x in label: |
| 520 | return label[x] |
| 521 | else: |
| 522 | total = len(label)-4 |
| 523 | label[x] = total |
| 524 | return total |
| 525 | |
| 526 | B = tuple([tuple(sorted(map(get_label,s))) for s in B]) |
| 527 | return B |
| 528 | |
| 529 | def P(alpha, m): |
| 530 | r""" |
| 531 | Returns the collection of pairs `P_{\alpha}(m)` |
| 532 | |
| 533 | For more information on this system, see [Hanani60]_. |
| 534 | |
| 535 | EXAMPLE:: |
| 536 | |
| 537 | sage: from sage.combinat.designs.steiner_quadruple_systems import P |
| 538 | sage: P(3,4) |
| 539 | [(0, 5), (2, 7), (4, 1), (6, 3)] |
| 540 | """ |
| 541 | if alpha >= 2*m-1: |
| 542 | raise Exception |
| 543 | if m%2==0: |
| 544 | if alpha < m: |
| 545 | if alpha%2 == 0: |
| 546 | b = alpha/2 |
| 547 | return [(2*a, (2*a + 2*b + 1)%(2*m)) for a in xrange(m)] |
| 548 | else: |
| 549 | b = (alpha-1)/2 |
| 550 | return [(2*a, (2*a - 2*b - 1)%(2*m)) for a in xrange(m)] |
| 551 | else: |
| 552 | y = alpha - m |
| 553 | pairs = [(b,(2*y-b)%(2*m)) for b in xrange(y)] |
| 554 | pairs += [(c,(2*m+2*y-c-2)%(2*m)) for c in xrange(2*y+1,m+y-1)] |
| 555 | pairs += [(2*m+int(-1.5-.5*(-1)**y),y),(2*m+int(-1.5+.5*(-1)**y),m+y-1)] |
| 556 | return pairs |
| 557 | else: |
| 558 | if alpha < m-1: |
| 559 | if alpha % 2 == 0: |
| 560 | b = alpha/2 |
| 561 | return [(2*a,(2*a+2*b+1)%(2*m)) for a in xrange(m)] |
| 562 | else: |
| 563 | b = (alpha-1)/2 |
| 564 | return [(2*a,(2*a-2*b-1)%(2*m)) for a in xrange(m)] |
| 565 | else: |
| 566 | y = alpha-m+1 |
| 567 | pairs = [(b,2*y-b) for b in xrange(y)] |
| 568 | pairs += [(c,2*m+2*y-c) for c in xrange(2*y+1,m+y)] |
| 569 | pairs += [(y,m+y)] |
| 570 | return pairs |
| 571 | |
| 572 | def _missing_pair(n,l): |
| 573 | r""" |
| 574 | Returns the smallest `(x,x+1)` that is not contained in `l`. |
| 575 | |
| 576 | EXAMPLE:: |
| 577 | |
| 578 | sage: from sage.combinat.designs.steiner_quadruple_systems import _missing_pair |
| 579 | sage: _missing_pair(6, [(0,1), (4,5)]) |
| 580 | (2, 3) |
| 581 | """ |
| 582 | l = [x for X in l for x in X] |
| 583 | for x in xrange(n): |
| 584 | if not x in l: |
| 585 | break |
| 586 | |
| 587 | assert not x in l |
| 588 | assert not x+1 in l |
| 589 | return (x,x+1) |
| 590 | |
| 591 | def barP(eps, m): |
| 592 | r""" |
| 593 | Returns the collection of pairs `\overline P_{\alpha}(m)` |
| 594 | |
| 595 | For more information on this system, see [Hanani60]_. |
| 596 | |
| 597 | EXAMPLE:: |
| 598 | |
| 599 | sage: from sage.combinat.designs.steiner_quadruple_systems import barP |
| 600 | sage: barP(3,4) |
| 601 | [(0, 4), (3, 5), (1, 2)] |
| 602 | """ |
| 603 | return barP_system(m)[eps] |
| 604 | |
| 605 | @cached_function |
| 606 | def barP_system(m): |
| 607 | r""" |
| 608 | Returns the 1-factorization of `K_{2m}` `\overline P(m)` |
| 609 | |
| 610 | For more information on this system, see [Hanani60]_. |
| 611 | |
| 612 | EXAMPLE:: |
| 613 | |
| 614 | sage: from sage.combinat.designs.steiner_quadruple_systems import barP_system |
| 615 | sage: barP_system(3) |
| 616 | [[(4, 3), (2, 5)], |
| 617 | [(0, 5), (4, 1)], |
| 618 | [(0, 2), (1, 3)], |
| 619 | [(1, 5), (4, 2), (0, 3)], |
| 620 | [(0, 4), (3, 5), (1, 2)], |
| 621 | [(0, 1), (2, 3), (4, 5)]] |
| 622 | """ |
| 623 | isequal = lambda e1,e2 : e1 == e2 or e1 == tuple(reversed(e2)) |
| 624 | pairs = [] |
| 625 | last = [] |
| 626 | |
| 627 | if m % 2 == 0: |
| 628 | # The first (shorter) collections of pairs, obtained from P by removing |
| 629 | # pairs. Those are added to 'last', a new list of pairs |
| 630 | last = [] |
| 631 | for n in xrange(1,(m-2)/2+1): |
| 632 | pairs.append([p for p in P(2*n,m) if not isequal(p,(2*n,(4*n+1)%(2*m)))]) |
| 633 | last.append((2*n,(4*n+1)%(2*m))) |
| 634 | pairs.append([p for p in P(2*n-1,m) if not isequal(p,(2*m-2-2*n,2*m-1-4*n))]) |
| 635 | last.append((2*m-2-2*n,2*m-1-4*n)) |
| 636 | |
| 637 | pairs.append([p for p in P(m,m) if not isequal(p,(2*m-2,0))]) |
| 638 | last.append((2*m-2,0)) |
| 639 | pairs.append([p for p in P(m+1,m) if not isequal(p,(2*m-1,1))]) |
| 640 | last.append((2*m-1,1)) |
| 641 | |
| 642 | assert all(len(pp) == m-1 for pp in pairs) |
| 643 | assert len(last) == m |
| 644 | |
| 645 | # Pairs of normal length |
| 646 | |
| 647 | pairs.append(P(0,m)) |
| 648 | pairs.append(P(m-1,m)) |
| 649 | |
| 650 | for alpha in xrange(m+2,2*m-1): |
| 651 | pairs.append(P(alpha,m)) |
| 652 | pairs.append(last) |
| 653 | |
| 654 | assert len(pairs) == 2*m |
| 655 | |
| 656 | # Now the points must be relabeled |
| 657 | relabel = {} |
| 658 | for n in xrange(1,(m-2)/2+1): |
| 659 | relabel[2*n] = (4*n)%(2*m) |
| 660 | relabel[4*n+1] = (4*n+1)%(2*m) |
| 661 | relabel[2*m-2-2*n] = (4*n-2)%(2*m) |
| 662 | relabel[2*m-1-4*n] = (4*n-1)%(2*m) |
| 663 | |
| 664 | relabel[2*m-2] = (1)%(2*m) |
| 665 | relabel[0] = 0 |
| 666 | relabel[2*m-1] = 2*m-1 |
| 667 | relabel[1] = 2*m-2 |
| 668 | |
| 669 | else: |
| 670 | # The first (shorter) collections of pairs, obtained from P by removing |
| 671 | # pairs. Those are added to 'last', a new list of pairs |
| 672 | |
| 673 | last = [] |
| 674 | for n in xrange(0,(m-3)/2+1): |
| 675 | pairs.append([p for p in P(2*n,m) if not isequal(p,(2*n,(4*n+1)%(2*m)))]) |
| 676 | last.append((2*n,(4*n+1)%(2*m))) |
| 677 | pairs.append([p for p in P(2*n+1,m) if not isequal(p,(2*m-2-2*n,2*m-3-4*n))]) |
| 678 | last.append((2*m-2-2*n,2*m-3-4*n)) |
| 679 | |
| 680 | pairs.append([p for p in P(2*m-2,m) if not isequal(p,(m-1,2*m-1))]) |
| 681 | last.append((m-1,2*m-1)) |
| 682 | |
| 683 | assert all(len(pp) == m-1 for pp in pairs) |
| 684 | assert len(pairs) == m |
| 685 | |
| 686 | # Pairs of normal length |
| 687 | |
| 688 | for alpha in xrange(m-1,2*m-2): |
| 689 | pairs.append(P(alpha,m)) |
| 690 | pairs.append(last) |
| 691 | |
| 692 | assert len(pairs) == 2*m |
| 693 | |
| 694 | # Now the points must be relabeled |
| 695 | relabel = {} |
| 696 | for n in xrange(0,(m-3)/2+1): |
| 697 | relabel[2*n] = (4*n)%(2*m) |
| 698 | relabel[4*n+1] = (4*n+1)%(2*m) |
| 699 | relabel[2*m-2-2*n] = (4*n+2)%(2*m) |
| 700 | relabel[2*m-3-4*n] = (4*n+3)%(2*m) |
| 701 | relabel[m-1] = (2*m-2)%(2*m) |
| 702 | relabel[2*m-1] = 2*m-1 |
| 703 | |
| 704 | assert len(relabel) == 2*m |
| 705 | assert len(pairs) == 2*m |
| 706 | |
| 707 | # Relabeling the points |
| 708 | |
| 709 | pairs = [[(relabel[x],relabel[y]) for x,y in pp] for pp in pairs] |
| 710 | |
| 711 | # Pairs are sorted first according to their cardinality, then using the |
| 712 | # number of the smallest point that they do NOT contain. |
| 713 | pairs.sort(key=lambda x: _missing_pair(2*m+1,x)) |
| 714 | |
| 715 | return pairs |
| 716 | |
| 717 | @cached_function |
| 718 | def steiner_quadruple_system(n, check = False): |
| 719 | r""" |
| 720 | Returns a Steiner Quadruple System on `n` points. |
| 721 | |
| 722 | INPUT: |
| 723 | |
| 724 | - ``n`` -- an integer such that `n\equiv 2,4[12]` |
| 725 | |
| 726 | - ``check`` (boolean) -- whether to check that the system is a Steiner |
| 727 | Quadruple System before returning it (`False` by default) |
| 728 | |
| 729 | EXAMPLES:: |
| 730 | |
| 731 | sage: designs.steiner_quadruple_system(4) |
| 732 | ((0, 1, 2, 3),) |
| 733 | sage: designs.steiner_quadruple_system(8) |
| 734 | ((0, 1, 2, 3), (0, 1, 6, 7), (0, 5, 2, 7), (0, 5, 6, 3), (4, 1, 2, 7), |
| 735 | (4, 1, 6, 3), (4, 5, 2, 3), (4, 5, 6, 7), (0, 1, 4, 5), (0, 2, 4, 6), |
| 736 | (0, 3, 4, 7), (1, 2, 5, 6), (1, 3, 5, 7), (2, 3, 6, 7)) |
| 737 | |
| 738 | TESTS:: |
| 739 | |
| 740 | sage: for n in xrange(4, 100): # long time |
| 741 | ....: if (n%6) in [2,4]: # long time |
| 742 | ....: sqs = designs.steiner_quadruple_system(n, check=True) # long time |
| 743 | """ |
| 744 | n = int(n) |
| 745 | if not ((n%6) in [2, 4]): |
| 746 | raise ValueError("n mod 12 must be equal to 2 or 4") |
| 747 | elif n == 4: |
| 748 | return ((0,1,2,3),) |
| 749 | elif n == 14: |
| 750 | return _SQS14() |
| 751 | elif n == 38: |
| 752 | return _SQS38() |
| 753 | elif (n%12) in [4,8]: |
| 754 | nn = n/2 |
| 755 | sqs = two_n(nn,steiner_quadruple_system(nn, check = False)) |
| 756 | elif (n%18) in [4,10]: |
| 757 | nn = (n+2)/3 |
| 758 | sqs = three_n_minus_two(nn,steiner_quadruple_system(nn, check = False)) |
| 759 | elif (n%36) == 34: |
| 760 | nn = (n+8)/3 |
| 761 | sqs = three_n_minus_height(nn,steiner_quadruple_system(nn, check = False)) |
| 762 | elif (n%36) == 26 : |
| 763 | nn = (n+4)/3 |
| 764 | sqs = three_n_minus_four(nn,steiner_quadruple_system(nn, check = False)) |
| 765 | elif (n%24) in [2,10]: |
| 766 | nn = (n+6)/4 |
| 767 | sqs = four_n_minus_six(nn,steiner_quadruple_system(nn, check = False)) |
| 768 | elif (n%72) in [14,38]: |
| 769 | nn = (n+10)/12 |
| 770 | sqs = twelve_n_minus_ten(nn, steiner_quadruple_system(nn, check = False)) |
| 771 | else: |
| 772 | raise ValueError("This shouldn't happen !") |
| 773 | |
| 774 | if check: |
| 775 | if not is_steiner_quadruple_system(n, sqs): |
| 776 | raise RuntimeError("Something is very very wrong.") |
| 777 | |
| 778 | return sqs |
| 779 | |
| 780 | def is_steiner_quadruple_system(n,B): |
| 781 | r""" |
| 782 | Tests if `B` is a Steiner Quadruple System on `0,...,n-1`. |
| 783 | |
| 784 | INPUT: |
| 785 | |
| 786 | - ``n`` (integer) |
| 787 | |
| 788 | - ``B`` -- a list of quadruples. |
| 789 | |
| 790 | EXAMPLES:: |
| 791 | |
| 792 | sage: from sage.combinat.designs.steiner_quadruple_systems import is_steiner_quadruple_system |
| 793 | sage: is_steiner_quadruple_system(8,designs.steiner_quadruple_system(8)) |
| 794 | True |
| 795 | """ |
| 796 | from sage.rings.arith import binomial |
| 797 | # Cardinality |
| 798 | if len(B)*4 != binomial(n,3): |
| 799 | return False |
| 800 | |
| 801 | # Vertex set |
| 802 | V = set([]) |
| 803 | for b in B: |
| 804 | for x in b: |
| 805 | V.add(x) |
| 806 | |
| 807 | if V != set(range(n)): |
| 808 | return False |
| 809 | |
| 810 | # No two 4-sets intersect on 3 elements. |
| 811 | from itertools import combinations |
| 812 | s = set([]) |
| 813 | for b in B: |
| 814 | for e in combinations(b,3): |
| 815 | if frozenset(e) in s: |
| 816 | return False |
| 817 | s.add(frozenset(e)) |
| 818 | |
| 819 | return True |
| 820 | |
| 821 | |
| 822 | def _SQS14(): |
| 823 | r""" |
| 824 | Returns a Steiner Quadruple System on 14 points. |
| 825 | |
| 826 | Obtained form the La Jolla Covering Repository. |
| 827 | |
| 828 | EXAMPLE:: |
| 829 | |
| 830 | sage: from sage.combinat.designs.steiner_quadruple_systems import is_steiner_quadruple_system, _SQS14 |
| 831 | sage: is_steiner_quadruple_system(14,_SQS14()) |
| 832 | True |
| 833 | """ |
| 834 | return ((0, 1, 2, 5), (0, 1, 3, 6), (0, 1, 4, 13), (0, 1, 7, 10), (0, 1, 8, 9), |
| 835 | (0, 1, 11, 12), (0, 2, 3, 4), (0, 2, 6, 12), (0, 2, 7, 9), (0, 2, 8, 11), |
| 836 | (0, 2, 10, 13), (0, 3, 5, 13), (0, 3, 7, 11), (0, 3, 8, 10), (0, 3, 9, 12), |
| 837 | (0, 4, 5, 9), (0, 4, 6, 11), (0, 4, 7, 8), (0, 4, 10, 12), (0, 5, 6, 8), |
| 838 | (0, 5, 7, 12), (0, 5, 10, 11), (0, 6, 7, 13), (0, 6, 9, 10), (0, 8, 12, 13), |
| 839 | (0, 9, 11, 13), (1, 2, 3, 13), (1, 2, 4, 12), (1, 2, 6, 9), (1, 2, 7, 11), |
| 840 | (1, 2, 8, 10), (1, 3, 4, 5), (1, 3, 7, 8), (1, 3, 9, 11), (1, 3, 10, 12), |
| 841 | (1, 4, 6, 10), (1, 4, 7, 9), (1, 4, 8, 11), (1, 5, 6, 11), (1, 5, 7, 13), |
| 842 | (1, 5, 8, 12), (1, 5, 9, 10), (1, 6, 7, 12), (1, 6, 8, 13), (1, 9, 12, 13), |
| 843 | (1, 10, 11, 13), (2, 3, 5, 11), (2, 3, 6, 7), (2, 3, 8, 12), (2, 3, 9, 10), |
| 844 | (2, 4, 5, 13), (2, 4, 6, 8), (2, 4, 7, 10), (2, 4, 9, 11), (2, 5, 6, 10), |
| 845 | (2, 5, 7, 8), (2, 5, 9, 12), (2, 6, 11, 13), (2, 7, 12, 13), (2, 8, 9, 13), |
| 846 | (2, 10, 11, 12), (3, 4, 6, 9), (3, 4, 7, 12), (3, 4, 8, 13), (3, 4, 10, 11), |
| 847 | (3, 5, 6, 12), (3, 5, 7, 10), (3, 5, 8, 9), (3, 6, 8, 11), (3, 6, 10, 13), |
| 848 | (3, 7, 9, 13), (3, 11, 12, 13), (4, 5, 6, 7), (4, 5, 8, 10), (4, 5, 11, 12), |
| 849 | (4, 6, 12, 13), (4, 7, 11, 13), (4, 8, 9, 12), (4, 9, 10, 13), (5, 6, 9, 13), |
| 850 | (5, 7, 9, 11), (5, 8, 11, 13), (5, 10, 12, 13), (6, 7, 8, 9), (6, 7, 10, 11), |
| 851 | (6, 8, 10, 12), (6, 9, 11, 12), (7, 8, 10, 13), (7, 8, 11, 12), (7, 9, 10, 12), |
| 852 | (8, 9, 10, 11)) |
| 853 | |
| 854 | def _SQS38(): |
| 855 | r""" |
| 856 | Returns a Steiner Quadruple System on 14 points. |
| 857 | |
| 858 | Obtained form the La Jolla Covering Repository. |
| 859 | |
| 860 | EXAMPLE:: |
| 861 | |
| 862 | sage: from sage.combinat.designs.steiner_quadruple_systems import is_steiner_quadruple_system, _SQS38 |
| 863 | sage: is_steiner_quadruple_system(38,_SQS38()) |
| 864 | True |
| 865 | """ |
| 866 | |
| 867 | # From the La Jolla Covering Repository |
| 868 | return ((0, 1, 2, 14), (0, 1, 3, 34), (0, 1, 4, 31), (0, 1, 5, 27), (0, 1, 6, 17), |
| 869 | (0, 1, 7, 12), (0, 1, 8, 36), (0, 1, 9, 10), (0, 1, 11, 18), (0, 1, 13, 37), |
| 870 | (0, 1, 15, 35), (0, 1, 16, 22), (0, 1, 19, 33), (0, 1, 20, 25), (0, 1, 21, 23), |
| 871 | (0, 1, 24, 32), (0, 1, 26, 28), (0, 1, 29, 30), (0, 2, 3, 10), (0, 2, 4, 9), |
| 872 | (0, 2, 5, 28), (0, 2, 6, 15), (0, 2, 7, 36), (0, 2, 8, 23), (0, 2, 11, 22), |
| 873 | (0, 2, 12, 13), (0, 2, 16, 25), (0, 2, 17, 18), (0, 2, 19, 30), (0, 2, 20, 35), |
| 874 | (0, 2, 21, 29), (0, 2, 24, 34), (0, 2, 26, 31), (0, 2, 27, 32), (0, 2, 33, 37), |
| 875 | (0, 3, 4, 18), (0, 3, 5, 23), (0, 3, 6, 32), (0, 3, 7, 19), (0, 3, 8, 20), |
| 876 | (0, 3, 9, 17), (0, 3, 11, 25), (0, 3, 12, 24), (0, 3, 13, 27), (0, 3, 14, 31), |
| 877 | (0, 3, 15, 22), (0, 3, 16, 28), (0, 3, 21, 33), (0, 3, 26, 36), (0, 3, 29, 35), |
| 878 | (0, 3, 30, 37), (0, 4, 5, 7), (0, 4, 6, 28), (0, 4, 8, 25), (0, 4, 10, 30), |
| 879 | (0, 4, 11, 20), (0, 4, 12, 32), (0, 4, 13, 36), (0, 4, 14, 29), (0, 4, 15, 27), |
| 880 | (0, 4, 16, 35), (0, 4, 17, 22), (0, 4, 19, 23), (0, 4, 21, 34), (0, 4, 24, 33), |
| 881 | (0, 4, 26, 37), (0, 5, 6, 24), (0, 5, 8, 26), (0, 5, 9, 29), (0, 5, 10, 20), |
| 882 | (0, 5, 11, 13), (0, 5, 12, 14), (0, 5, 15, 33), (0, 5, 16, 37), (0, 5, 17, 35), |
| 883 | (0, 5, 18, 19), (0, 5, 21, 25), (0, 5, 22, 30), (0, 5, 31, 32), (0, 5, 34, 36), |
| 884 | (0, 6, 7, 30), (0, 6, 8, 33), (0, 6, 9, 12), (0, 6, 10, 18), (0, 6, 11, 37), |
| 885 | (0, 6, 13, 31), (0, 6, 14, 35), (0, 6, 16, 29), (0, 6, 19, 25), (0, 6, 20, 27), |
| 886 | (0, 6, 21, 36), (0, 6, 22, 23), (0, 6, 26, 34), (0, 7, 8, 11), (0, 7, 9, 33), |
| 887 | (0, 7, 10, 21), (0, 7, 13, 20), (0, 7, 14, 22), (0, 7, 15, 31), (0, 7, 16, 34), |
| 888 | (0, 7, 17, 29), (0, 7, 18, 24), (0, 7, 23, 26), (0, 7, 25, 32), (0, 7, 27, 28), |
| 889 | (0, 7, 35, 37), (0, 8, 9, 37), (0, 8, 10, 27), (0, 8, 12, 18), (0, 8, 13, 30), |
| 890 | (0, 8, 14, 15), (0, 8, 16, 21), (0, 8, 17, 19), (0, 8, 22, 35), (0, 8, 24, 31), |
| 891 | (0, 8, 28, 34), (0, 8, 29, 32), (0, 9, 11, 30), (0, 9, 13, 23), (0, 9, 14, 18), |
| 892 | (0, 9, 15, 25), (0, 9, 16, 26), (0, 9, 19, 28), (0, 9, 20, 36), (0, 9, 21, 35), |
| 893 | (0, 9, 22, 24), (0, 9, 27, 31), (0, 9, 32, 34), (0, 10, 11, 36), |
| 894 | (0, 10, 12, 15), (0, 10, 13, 26), (0, 10, 14, 16), (0, 10, 17, 37), |
| 895 | (0, 10, 19, 29), (0, 10, 22, 31), (0, 10, 23, 32), (0, 10, 24, 35), |
| 896 | (0, 10, 25, 34), (0, 10, 28, 33), (0, 11, 12, 16), (0, 11, 14, 24), |
| 897 | (0, 11, 15, 26), (0, 11, 17, 31), (0, 11, 19, 21), (0, 11, 23, 34), |
| 898 | (0, 11, 27, 29), (0, 11, 28, 35), (0, 11, 32, 33), (0, 12, 17, 20), |
| 899 | (0, 12, 19, 35), (0, 12, 21, 28), (0, 12, 22, 25), (0, 12, 23, 27), |
| 900 | (0, 12, 26, 29), (0, 12, 30, 33), (0, 12, 31, 34), (0, 12, 36, 37), |
| 901 | (0, 13, 14, 33), (0, 13, 15, 29), (0, 13, 16, 24), (0, 13, 17, 21), |
| 902 | (0, 13, 18, 34), (0, 13, 19, 32), (0, 13, 22, 28), (0, 13, 25, 35), |
| 903 | (0, 14, 17, 26), (0, 14, 19, 20), (0, 14, 21, 32), (0, 14, 23, 36), |
| 904 | (0, 14, 25, 28), (0, 14, 27, 30), (0, 14, 34, 37), (0, 15, 16, 36), |
| 905 | (0, 15, 17, 23), (0, 15, 18, 20), (0, 15, 19, 34), (0, 15, 21, 37), |
| 906 | (0, 15, 24, 28), (0, 15, 30, 32), (0, 16, 17, 32), (0, 16, 18, 27), |
| 907 | (0, 16, 19, 31), (0, 16, 20, 33), (0, 16, 23, 30), (0, 17, 24, 27), |
| 908 | (0, 17, 25, 33), (0, 17, 28, 36), (0, 17, 30, 34), (0, 18, 21, 26), |
| 909 | (0, 18, 22, 29), (0, 18, 23, 28), (0, 18, 25, 31), (0, 18, 30, 35), |
| 910 | (0, 18, 32, 37), (0, 18, 33, 36), (0, 19, 22, 26), (0, 19, 24, 37), |
| 911 | (0, 19, 27, 36), (0, 20, 21, 31), (0, 20, 22, 37), (0, 20, 23, 24), |
| 912 | (0, 20, 26, 30), (0, 20, 28, 32), (0, 20, 29, 34), (0, 21, 22, 27), |
| 913 | (0, 21, 24, 30), (0, 22, 32, 36), (0, 22, 33, 34), (0, 23, 25, 29), |
| 914 | (0, 23, 31, 37), (0, 23, 33, 35), (0, 24, 25, 26), (0, 24, 29, 36), |
| 915 | (0, 25, 27, 37), (0, 25, 30, 36), (0, 26, 27, 33), (0, 26, 32, 35), |
| 916 | (0, 27, 34, 35), (0, 28, 29, 37), (0, 28, 30, 31), (0, 29, 31, 33), |
| 917 | (0, 31, 35, 36), (1, 2, 3, 15), (1, 2, 4, 35), (1, 2, 5, 32), (1, 2, 6, 28), |
| 918 | (1, 2, 7, 18), (1, 2, 8, 13), (1, 2, 9, 37), (1, 2, 10, 11), (1, 2, 12, 19), |
| 919 | (1, 2, 16, 36), (1, 2, 17, 23), (1, 2, 20, 34), (1, 2, 21, 26), (1, 2, 22, 24), |
| 920 | (1, 2, 25, 33), (1, 2, 27, 29), (1, 2, 30, 31), (1, 3, 4, 11), (1, 3, 5, 10), |
| 921 | (1, 3, 6, 29), (1, 3, 7, 16), (1, 3, 8, 37), (1, 3, 9, 24), (1, 3, 12, 23), |
| 922 | (1, 3, 13, 14), (1, 3, 17, 26), (1, 3, 18, 19), (1, 3, 20, 31), (1, 3, 21, 36), |
| 923 | (1, 3, 22, 30), (1, 3, 25, 35), (1, 3, 27, 32), (1, 3, 28, 33), (1, 4, 5, 19), |
| 924 | (1, 4, 6, 24), (1, 4, 7, 33), (1, 4, 8, 20), (1, 4, 9, 21), (1, 4, 10, 18), |
| 925 | (1, 4, 12, 26), (1, 4, 13, 25), (1, 4, 14, 28), (1, 4, 15, 32), (1, 4, 16, 23), |
| 926 | (1, 4, 17, 29), (1, 4, 22, 34), (1, 4, 27, 37), (1, 4, 30, 36), (1, 5, 6, 8), |
| 927 | (1, 5, 7, 29), (1, 5, 9, 26), (1, 5, 11, 31), (1, 5, 12, 21), (1, 5, 13, 33), |
| 928 | (1, 5, 14, 37), (1, 5, 15, 30), (1, 5, 16, 28), (1, 5, 17, 36), (1, 5, 18, 23), |
| 929 | (1, 5, 20, 24), (1, 5, 22, 35), (1, 5, 25, 34), (1, 6, 7, 25), (1, 6, 9, 27), |
| 930 | (1, 6, 10, 30), (1, 6, 11, 21), (1, 6, 12, 14), (1, 6, 13, 15), (1, 6, 16, 34), |
| 931 | (1, 6, 18, 36), (1, 6, 19, 20), (1, 6, 22, 26), (1, 6, 23, 31), (1, 6, 32, 33), |
| 932 | (1, 6, 35, 37), (1, 7, 8, 31), (1, 7, 9, 34), (1, 7, 10, 13), (1, 7, 11, 19), |
| 933 | (1, 7, 14, 32), (1, 7, 15, 36), (1, 7, 17, 30), (1, 7, 20, 26), (1, 7, 21, 28), |
| 934 | (1, 7, 22, 37), (1, 7, 23, 24), (1, 7, 27, 35), (1, 8, 9, 12), (1, 8, 10, 34), |
| 935 | (1, 8, 11, 22), (1, 8, 14, 21), (1, 8, 15, 23), (1, 8, 16, 32), (1, 8, 17, 35), |
| 936 | (1, 8, 18, 30), (1, 8, 19, 25), (1, 8, 24, 27), (1, 8, 26, 33), (1, 8, 28, 29), |
| 937 | (1, 9, 11, 28), (1, 9, 13, 19), (1, 9, 14, 31), (1, 9, 15, 16), (1, 9, 17, 22), |
| 938 | (1, 9, 18, 20), (1, 9, 23, 36), (1, 9, 25, 32), (1, 9, 29, 35), (1, 9, 30, 33), |
| 939 | (1, 10, 12, 31), (1, 10, 14, 24), (1, 10, 15, 19), (1, 10, 16, 26), |
| 940 | (1, 10, 17, 27), (1, 10, 20, 29), (1, 10, 21, 37), (1, 10, 22, 36), |
| 941 | (1, 10, 23, 25), (1, 10, 28, 32), (1, 10, 33, 35), (1, 11, 12, 37), |
| 942 | (1, 11, 13, 16), (1, 11, 14, 27), (1, 11, 15, 17), (1, 11, 20, 30), |
| 943 | (1, 11, 23, 32), (1, 11, 24, 33), (1, 11, 25, 36), (1, 11, 26, 35), |
| 944 | (1, 11, 29, 34), (1, 12, 13, 17), (1, 12, 15, 25), (1, 12, 16, 27), |
| 945 | (1, 12, 18, 32), (1, 12, 20, 22), (1, 12, 24, 35), (1, 12, 28, 30), |
| 946 | (1, 12, 29, 36), (1, 12, 33, 34), (1, 13, 18, 21), (1, 13, 20, 36), |
| 947 | (1, 13, 22, 29), (1, 13, 23, 26), (1, 13, 24, 28), (1, 13, 27, 30), |
| 948 | (1, 13, 31, 34), (1, 13, 32, 35), (1, 14, 15, 34), (1, 14, 16, 30), |
| 949 | (1, 14, 17, 25), (1, 14, 18, 22), (1, 14, 19, 35), (1, 14, 20, 33), |
| 950 | (1, 14, 23, 29), (1, 14, 26, 36), (1, 15, 18, 27), (1, 15, 20, 21), |
| 951 | (1, 15, 22, 33), (1, 15, 24, 37), (1, 15, 26, 29), (1, 15, 28, 31), |
| 952 | (1, 16, 17, 37), (1, 16, 18, 24), (1, 16, 19, 21), (1, 16, 20, 35), |
| 953 | (1, 16, 25, 29), (1, 16, 31, 33), (1, 17, 18, 33), (1, 17, 19, 28), |
| 954 | (1, 17, 20, 32), (1, 17, 21, 34), (1, 17, 24, 31), (1, 18, 25, 28), |
| 955 | (1, 18, 26, 34), (1, 18, 29, 37), (1, 18, 31, 35), (1, 19, 22, 27), |
| 956 | (1, 19, 23, 30), (1, 19, 24, 29), (1, 19, 26, 32), (1, 19, 31, 36), |
| 957 | (1, 19, 34, 37), (1, 20, 23, 27), (1, 20, 28, 37), (1, 21, 22, 32), |
| 958 | (1, 21, 24, 25), (1, 21, 27, 31), (1, 21, 29, 33), (1, 21, 30, 35), |
| 959 | (1, 22, 23, 28), (1, 22, 25, 31), (1, 23, 33, 37), (1, 23, 34, 35), |
| 960 | (1, 24, 26, 30), (1, 24, 34, 36), (1, 25, 26, 27), (1, 25, 30, 37), |
| 961 | (1, 26, 31, 37), (1, 27, 28, 34), (1, 27, 33, 36), (1, 28, 35, 36), |
| 962 | (1, 29, 31, 32), (1, 30, 32, 34), (1, 32, 36, 37), (2, 3, 4, 16), |
| 963 | (2, 3, 5, 36), (2, 3, 6, 33), (2, 3, 7, 29), (2, 3, 8, 19), (2, 3, 9, 14), |
| 964 | (2, 3, 11, 12), (2, 3, 13, 20), (2, 3, 17, 37), (2, 3, 18, 24), (2, 3, 21, 35), |
| 965 | (2, 3, 22, 27), (2, 3, 23, 25), (2, 3, 26, 34), (2, 3, 28, 30), (2, 3, 31, 32), |
| 966 | (2, 4, 5, 12), (2, 4, 6, 11), (2, 4, 7, 30), (2, 4, 8, 17), (2, 4, 10, 25), |
| 967 | (2, 4, 13, 24), (2, 4, 14, 15), (2, 4, 18, 27), (2, 4, 19, 20), (2, 4, 21, 32), |
| 968 | (2, 4, 22, 37), (2, 4, 23, 31), (2, 4, 26, 36), (2, 4, 28, 33), (2, 4, 29, 34), |
| 969 | (2, 5, 6, 20), (2, 5, 7, 25), (2, 5, 8, 34), (2, 5, 9, 21), (2, 5, 10, 22), |
| 970 | (2, 5, 11, 19), (2, 5, 13, 27), (2, 5, 14, 26), (2, 5, 15, 29), (2, 5, 16, 33), |
| 971 | (2, 5, 17, 24), (2, 5, 18, 30), (2, 5, 23, 35), (2, 5, 31, 37), (2, 6, 7, 9), |
| 972 | (2, 6, 8, 30), (2, 6, 10, 27), (2, 6, 12, 32), (2, 6, 13, 22), (2, 6, 14, 34), |
| 973 | (2, 6, 16, 31), (2, 6, 17, 29), (2, 6, 18, 37), (2, 6, 19, 24), (2, 6, 21, 25), |
| 974 | (2, 6, 23, 36), (2, 6, 26, 35), (2, 7, 8, 26), (2, 7, 10, 28), (2, 7, 11, 31), |
| 975 | (2, 7, 12, 22), (2, 7, 13, 15), (2, 7, 14, 16), (2, 7, 17, 35), (2, 7, 19, 37), |
| 976 | (2, 7, 20, 21), (2, 7, 23, 27), (2, 7, 24, 32), (2, 7, 33, 34), (2, 8, 9, 32), |
| 977 | (2, 8, 10, 35), (2, 8, 11, 14), (2, 8, 12, 20), (2, 8, 15, 33), (2, 8, 16, 37), |
| 978 | (2, 8, 18, 31), (2, 8, 21, 27), (2, 8, 22, 29), (2, 8, 24, 25), (2, 8, 28, 36), |
| 979 | (2, 9, 10, 13), (2, 9, 11, 35), (2, 9, 12, 23), (2, 9, 15, 22), (2, 9, 16, 24), |
| 980 | (2, 9, 17, 33), (2, 9, 18, 36), (2, 9, 19, 31), (2, 9, 20, 26), (2, 9, 25, 28), |
| 981 | (2, 9, 27, 34), (2, 9, 29, 30), (2, 10, 12, 29), (2, 10, 14, 20), |
| 982 | (2, 10, 15, 32), (2, 10, 16, 17), (2, 10, 18, 23), (2, 10, 19, 21), |
| 983 | (2, 10, 24, 37), (2, 10, 26, 33), (2, 10, 30, 36), (2, 10, 31, 34), |
| 984 | (2, 11, 13, 32), (2, 11, 15, 25), (2, 11, 16, 20), (2, 11, 17, 27), |
| 985 | (2, 11, 18, 28), (2, 11, 21, 30), (2, 11, 23, 37), (2, 11, 24, 26), |
| 986 | (2, 11, 29, 33), (2, 11, 34, 36), (2, 12, 14, 17), (2, 12, 15, 28), |
| 987 | (2, 12, 16, 18), (2, 12, 21, 31), (2, 12, 24, 33), (2, 12, 25, 34), |
| 988 | (2, 12, 26, 37), (2, 12, 27, 36), (2, 12, 30, 35), (2, 13, 14, 18), |
| 989 | (2, 13, 16, 26), (2, 13, 17, 28), (2, 13, 19, 33), (2, 13, 21, 23), |
| 990 | (2, 13, 25, 36), (2, 13, 29, 31), (2, 13, 30, 37), (2, 13, 34, 35), |
| 991 | (2, 14, 19, 22), (2, 14, 21, 37), (2, 14, 23, 30), (2, 14, 24, 27), |
| 992 | (2, 14, 25, 29), (2, 14, 28, 31), (2, 14, 32, 35), (2, 14, 33, 36), |
| 993 | (2, 15, 16, 35), (2, 15, 17, 31), (2, 15, 18, 26), (2, 15, 19, 23), |
| 994 | (2, 15, 20, 36), (2, 15, 21, 34), (2, 15, 24, 30), (2, 15, 27, 37), |
| 995 | (2, 16, 19, 28), (2, 16, 21, 22), (2, 16, 23, 34), (2, 16, 27, 30), |
| 996 | (2, 16, 29, 32), (2, 17, 19, 25), (2, 17, 20, 22), (2, 17, 21, 36), |
| 997 | (2, 17, 26, 30), (2, 17, 32, 34), (2, 18, 19, 34), (2, 18, 20, 29), |
| 998 | (2, 18, 21, 33), (2, 18, 22, 35), (2, 18, 25, 32), (2, 19, 26, 29), |
| 999 | (2, 19, 27, 35), (2, 19, 32, 36), (2, 20, 23, 28), (2, 20, 24, 31), |
| 1000 | (2, 20, 25, 30), (2, 20, 27, 33), (2, 20, 32, 37), (2, 21, 24, 28), |
| 1001 | (2, 22, 23, 33), (2, 22, 25, 26), (2, 22, 28, 32), (2, 22, 30, 34), |
| 1002 | (2, 22, 31, 36), (2, 23, 24, 29), (2, 23, 26, 32), (2, 24, 35, 36), |
| 1003 | (2, 25, 27, 31), (2, 25, 35, 37), (2, 26, 27, 28), (2, 28, 29, 35), |
| 1004 | (2, 28, 34, 37), (2, 29, 36, 37), (2, 30, 32, 33), (2, 31, 33, 35), |
| 1005 | (3, 4, 5, 17), (3, 4, 6, 37), (3, 4, 7, 34), (3, 4, 8, 30), (3, 4, 9, 20), |
| 1006 | (3, 4, 10, 15), (3, 4, 12, 13), (3, 4, 14, 21), (3, 4, 19, 25), (3, 4, 22, 36), |
| 1007 | (3, 4, 23, 28), (3, 4, 24, 26), (3, 4, 27, 35), (3, 4, 29, 31), (3, 4, 32, 33), |
| 1008 | (3, 5, 6, 13), (3, 5, 7, 12), (3, 5, 8, 31), (3, 5, 9, 18), (3, 5, 11, 26), |
| 1009 | (3, 5, 14, 25), (3, 5, 15, 16), (3, 5, 19, 28), (3, 5, 20, 21), (3, 5, 22, 33), |
| 1010 | (3, 5, 24, 32), (3, 5, 27, 37), (3, 5, 29, 34), (3, 5, 30, 35), (3, 6, 7, 21), |
| 1011 | (3, 6, 8, 26), (3, 6, 9, 35), (3, 6, 10, 22), (3, 6, 11, 23), (3, 6, 12, 20), |
| 1012 | (3, 6, 14, 28), (3, 6, 15, 27), (3, 6, 16, 30), (3, 6, 17, 34), (3, 6, 18, 25), |
| 1013 | (3, 6, 19, 31), (3, 6, 24, 36), (3, 7, 8, 10), (3, 7, 9, 31), (3, 7, 11, 28), |
| 1014 | (3, 7, 13, 33), (3, 7, 14, 23), (3, 7, 15, 35), (3, 7, 17, 32), (3, 7, 18, 30), |
| 1015 | (3, 7, 20, 25), (3, 7, 22, 26), (3, 7, 24, 37), (3, 7, 27, 36), (3, 8, 9, 27), |
| 1016 | (3, 8, 11, 29), (3, 8, 12, 32), (3, 8, 13, 23), (3, 8, 14, 16), (3, 8, 15, 17), |
| 1017 | (3, 8, 18, 36), (3, 8, 21, 22), (3, 8, 24, 28), (3, 8, 25, 33), (3, 8, 34, 35), |
| 1018 | (3, 9, 10, 33), (3, 9, 11, 36), (3, 9, 12, 15), (3, 9, 13, 21), (3, 9, 16, 34), |
| 1019 | (3, 9, 19, 32), (3, 9, 22, 28), (3, 9, 23, 30), (3, 9, 25, 26), (3, 9, 29, 37), |
| 1020 | (3, 10, 11, 14), (3, 10, 12, 36), (3, 10, 13, 24), (3, 10, 16, 23), |
| 1021 | (3, 10, 17, 25), (3, 10, 18, 34), (3, 10, 19, 37), (3, 10, 20, 32), |
| 1022 | (3, 10, 21, 27), (3, 10, 26, 29), (3, 10, 28, 35), (3, 10, 30, 31), |
| 1023 | (3, 11, 13, 30), (3, 11, 15, 21), (3, 11, 16, 33), (3, 11, 17, 18), |
| 1024 | (3, 11, 19, 24), (3, 11, 20, 22), (3, 11, 27, 34), (3, 11, 31, 37), |
| 1025 | (3, 11, 32, 35), (3, 12, 14, 33), (3, 12, 16, 26), (3, 12, 17, 21), |
| 1026 | (3, 12, 18, 28), (3, 12, 19, 29), (3, 12, 22, 31), (3, 12, 25, 27), |
| 1027 | (3, 12, 30, 34), (3, 12, 35, 37), (3, 13, 15, 18), (3, 13, 16, 29), |
| 1028 | (3, 13, 17, 19), (3, 13, 22, 32), (3, 13, 25, 34), (3, 13, 26, 35), |
| 1029 | (3, 13, 28, 37), (3, 13, 31, 36), (3, 14, 15, 19), (3, 14, 17, 27), |
| 1030 | (3, 14, 18, 29), (3, 14, 20, 34), (3, 14, 22, 24), (3, 14, 26, 37), |
| 1031 | (3, 14, 30, 32), (3, 14, 35, 36), (3, 15, 20, 23), (3, 15, 24, 31), |
| 1032 | (3, 15, 25, 28), (3, 15, 26, 30), (3, 15, 29, 32), (3, 15, 33, 36), |
| 1033 | (3, 15, 34, 37), (3, 16, 17, 36), (3, 16, 18, 32), (3, 16, 19, 27), |
| 1034 | (3, 16, 20, 24), (3, 16, 21, 37), (3, 16, 22, 35), (3, 16, 25, 31), |
| 1035 | (3, 17, 20, 29), (3, 17, 22, 23), (3, 17, 24, 35), (3, 17, 28, 31), |
| 1036 | (3, 17, 30, 33), (3, 18, 20, 26), (3, 18, 21, 23), (3, 18, 22, 37), |
| 1037 | (3, 18, 27, 31), (3, 18, 33, 35), (3, 19, 20, 35), (3, 19, 21, 30), |
| 1038 | (3, 19, 22, 34), (3, 19, 23, 36), (3, 19, 26, 33), (3, 20, 27, 30), |
| 1039 | (3, 20, 28, 36), (3, 20, 33, 37), (3, 21, 24, 29), (3, 21, 25, 32), |
| 1040 | (3, 21, 26, 31), (3, 21, 28, 34), (3, 22, 25, 29), (3, 23, 24, 34), |
| 1041 | (3, 23, 26, 27), (3, 23, 29, 33), (3, 23, 31, 35), (3, 23, 32, 37), |
| 1042 | (3, 24, 25, 30), (3, 24, 27, 33), (3, 25, 36, 37), (3, 26, 28, 32), |
| 1043 | (3, 27, 28, 29), (3, 29, 30, 36), (3, 31, 33, 34), (3, 32, 34, 36), |
| 1044 | (4, 5, 6, 18), (4, 5, 8, 35), (4, 5, 9, 31), (4, 5, 10, 21), (4, 5, 11, 16), |
| 1045 | (4, 5, 13, 14), (4, 5, 15, 22), (4, 5, 20, 26), (4, 5, 23, 37), (4, 5, 24, 29), |
| 1046 | (4, 5, 25, 27), (4, 5, 28, 36), (4, 5, 30, 32), (4, 5, 33, 34), (4, 6, 7, 14), |
| 1047 | (4, 6, 8, 13), (4, 6, 9, 32), (4, 6, 10, 19), (4, 6, 12, 27), (4, 6, 15, 26), |
| 1048 | (4, 6, 16, 17), (4, 6, 20, 29), (4, 6, 21, 22), (4, 6, 23, 34), (4, 6, 25, 33), |
| 1049 | (4, 6, 30, 35), (4, 6, 31, 36), (4, 7, 8, 22), (4, 7, 9, 27), (4, 7, 10, 36), |
| 1050 | (4, 7, 11, 23), (4, 7, 12, 24), (4, 7, 13, 21), (4, 7, 15, 29), (4, 7, 16, 28), |
| 1051 | (4, 7, 17, 31), (4, 7, 18, 35), (4, 7, 19, 26), (4, 7, 20, 32), (4, 7, 25, 37), |
| 1052 | (4, 8, 9, 11), (4, 8, 10, 32), (4, 8, 12, 29), (4, 8, 14, 34), (4, 8, 15, 24), |
| 1053 | (4, 8, 16, 36), (4, 8, 18, 33), (4, 8, 19, 31), (4, 8, 21, 26), (4, 8, 23, 27), |
| 1054 | (4, 8, 28, 37), (4, 9, 10, 28), (4, 9, 12, 30), (4, 9, 13, 33), (4, 9, 14, 24), |
| 1055 | (4, 9, 15, 17), (4, 9, 16, 18), (4, 9, 19, 37), (4, 9, 22, 23), (4, 9, 25, 29), |
| 1056 | (4, 9, 26, 34), (4, 9, 35, 36), (4, 10, 11, 34), (4, 10, 12, 37), |
| 1057 | (4, 10, 13, 16), (4, 10, 14, 22), (4, 10, 17, 35), (4, 10, 20, 33), |
| 1058 | (4, 10, 23, 29), (4, 10, 24, 31), (4, 10, 26, 27), (4, 11, 12, 15), |
| 1059 | (4, 11, 13, 37), (4, 11, 14, 25), (4, 11, 17, 24), (4, 11, 18, 26), |
| 1060 | (4, 11, 19, 35), (4, 11, 21, 33), (4, 11, 22, 28), (4, 11, 27, 30), |
| 1061 | (4, 11, 29, 36), (4, 11, 31, 32), (4, 12, 14, 31), (4, 12, 16, 22), |
| 1062 | (4, 12, 17, 34), (4, 12, 18, 19), (4, 12, 20, 25), (4, 12, 21, 23), |
| 1063 | (4, 12, 28, 35), (4, 12, 33, 36), (4, 13, 15, 34), (4, 13, 17, 27), |
| 1064 | (4, 13, 18, 22), (4, 13, 19, 29), (4, 13, 20, 30), (4, 13, 23, 32), |
| 1065 | (4, 13, 26, 28), (4, 13, 31, 35), (4, 14, 16, 19), (4, 14, 17, 30), |
| 1066 | (4, 14, 18, 20), (4, 14, 23, 33), (4, 14, 26, 35), (4, 14, 27, 36), |
| 1067 | (4, 14, 32, 37), (4, 15, 16, 20), (4, 15, 18, 28), (4, 15, 19, 30), |
| 1068 | (4, 15, 21, 35), (4, 15, 23, 25), (4, 15, 31, 33), (4, 15, 36, 37), |
| 1069 | (4, 16, 21, 24), (4, 16, 25, 32), (4, 16, 26, 29), (4, 16, 27, 31), |
| 1070 | (4, 16, 30, 33), (4, 16, 34, 37), (4, 17, 18, 37), (4, 17, 19, 33), |
| 1071 | (4, 17, 20, 28), (4, 17, 21, 25), (4, 17, 23, 36), (4, 17, 26, 32), |
| 1072 | (4, 18, 21, 30), (4, 18, 23, 24), (4, 18, 25, 36), (4, 18, 29, 32), |
| 1073 | (4, 18, 31, 34), (4, 19, 21, 27), (4, 19, 22, 24), (4, 19, 28, 32), |
| 1074 | (4, 19, 34, 36), (4, 20, 21, 36), (4, 20, 22, 31), (4, 20, 23, 35), |
| 1075 | (4, 20, 24, 37), (4, 20, 27, 34), (4, 21, 28, 31), (4, 21, 29, 37), |
| 1076 | (4, 22, 25, 30), (4, 22, 26, 33), (4, 22, 27, 32), (4, 22, 29, 35), |
| 1077 | (4, 23, 26, 30), (4, 24, 25, 35), (4, 24, 27, 28), (4, 24, 30, 34), |
| 1078 | (4, 24, 32, 36), (4, 25, 26, 31), (4, 25, 28, 34), (4, 27, 29, 33), |
| 1079 | (4, 28, 29, 30), (4, 30, 31, 37), (4, 32, 34, 35), (4, 33, 35, 37), |
| 1080 | (5, 6, 7, 19), (5, 6, 9, 36), (5, 6, 10, 32), (5, 6, 11, 22), (5, 6, 12, 17), |
| 1081 | (5, 6, 14, 15), (5, 6, 16, 23), (5, 6, 21, 27), (5, 6, 25, 30), (5, 6, 26, 28), |
| 1082 | (5, 6, 29, 37), (5, 6, 31, 33), (5, 6, 34, 35), (5, 7, 8, 15), (5, 7, 9, 14), |
| 1083 | (5, 7, 10, 33), (5, 7, 11, 20), (5, 7, 13, 28), (5, 7, 16, 27), (5, 7, 17, 18), |
| 1084 | (5, 7, 21, 30), (5, 7, 22, 23), (5, 7, 24, 35), (5, 7, 26, 34), (5, 7, 31, 36), |
| 1085 | (5, 7, 32, 37), (5, 8, 9, 23), (5, 8, 10, 28), (5, 8, 11, 37), (5, 8, 12, 24), |
| 1086 | (5, 8, 13, 25), (5, 8, 14, 22), (5, 8, 16, 30), (5, 8, 17, 29), (5, 8, 18, 32), |
| 1087 | (5, 8, 19, 36), (5, 8, 20, 27), (5, 8, 21, 33), (5, 9, 10, 12), (5, 9, 11, 33), |
| 1088 | (5, 9, 13, 30), (5, 9, 15, 35), (5, 9, 16, 25), (5, 9, 17, 37), (5, 9, 19, 34), |
| 1089 | (5, 9, 20, 32), (5, 9, 22, 27), (5, 9, 24, 28), (5, 10, 11, 29), |
| 1090 | (5, 10, 13, 31), (5, 10, 14, 34), (5, 10, 15, 25), (5, 10, 16, 18), |
| 1091 | (5, 10, 17, 19), (5, 10, 23, 24), (5, 10, 26, 30), (5, 10, 27, 35), |
| 1092 | (5, 10, 36, 37), (5, 11, 12, 35), (5, 11, 14, 17), (5, 11, 15, 23), |
| 1093 | (5, 11, 18, 36), (5, 11, 21, 34), (5, 11, 24, 30), (5, 11, 25, 32), |
| 1094 | (5, 11, 27, 28), (5, 12, 13, 16), (5, 12, 15, 26), (5, 12, 18, 25), |
| 1095 | (5, 12, 19, 27), (5, 12, 20, 36), (5, 12, 22, 34), (5, 12, 23, 29), |
| 1096 | (5, 12, 28, 31), (5, 12, 30, 37), (5, 12, 32, 33), (5, 13, 15, 32), |
| 1097 | (5, 13, 17, 23), (5, 13, 18, 35), (5, 13, 19, 20), (5, 13, 21, 26), |
| 1098 | (5, 13, 22, 24), (5, 13, 29, 36), (5, 13, 34, 37), (5, 14, 16, 35), |
| 1099 | (5, 14, 18, 28), (5, 14, 19, 23), (5, 14, 20, 30), (5, 14, 21, 31), |
| 1100 | (5, 14, 24, 33), (5, 14, 27, 29), (5, 14, 32, 36), (5, 15, 17, 20), |
| 1101 | (5, 15, 18, 31), (5, 15, 19, 21), (5, 15, 24, 34), (5, 15, 27, 36), |
| 1102 | (5, 15, 28, 37), (5, 16, 17, 21), (5, 16, 19, 29), (5, 16, 20, 31), |
| 1103 | (5, 16, 22, 36), (5, 16, 24, 26), (5, 16, 32, 34), (5, 17, 22, 25), |
| 1104 | (5, 17, 26, 33), (5, 17, 27, 30), (5, 17, 28, 32), (5, 17, 31, 34), |
| 1105 | (5, 18, 20, 34), (5, 18, 21, 29), (5, 18, 22, 26), (5, 18, 24, 37), |
| 1106 | (5, 18, 27, 33), (5, 19, 22, 31), (5, 19, 24, 25), (5, 19, 26, 37), |
| 1107 | (5, 19, 30, 33), (5, 19, 32, 35), (5, 20, 22, 28), (5, 20, 23, 25), |
| 1108 | (5, 20, 29, 33), (5, 20, 35, 37), (5, 21, 22, 37), (5, 21, 23, 32), |
| 1109 | (5, 21, 24, 36), (5, 21, 28, 35), (5, 22, 29, 32), (5, 23, 26, 31), |
| 1110 | (5, 23, 27, 34), (5, 23, 28, 33), (5, 23, 30, 36), (5, 24, 27, 31), |
| 1111 | (5, 25, 26, 36), (5, 25, 28, 29), (5, 25, 31, 35), (5, 25, 33, 37), |
| 1112 | (5, 26, 27, 32), (5, 26, 29, 35), (5, 28, 30, 34), (5, 29, 30, 31), |
| 1113 | (5, 33, 35, 36), (6, 7, 8, 20), (6, 7, 10, 37), (6, 7, 11, 33), (6, 7, 12, 23), |
| 1114 | (6, 7, 13, 18), (6, 7, 15, 16), (6, 7, 17, 24), (6, 7, 22, 28), (6, 7, 26, 31), |
| 1115 | (6, 7, 27, 29), (6, 7, 32, 34), (6, 7, 35, 36), (6, 8, 9, 16), (6, 8, 10, 15), |
| 1116 | (6, 8, 11, 34), (6, 8, 12, 21), (6, 8, 14, 29), (6, 8, 17, 28), (6, 8, 18, 19), |
| 1117 | (6, 8, 22, 31), (6, 8, 23, 24), (6, 8, 25, 36), (6, 8, 27, 35), (6, 8, 32, 37), |
| 1118 | (6, 9, 10, 24), (6, 9, 11, 29), (6, 9, 13, 25), (6, 9, 14, 26), (6, 9, 15, 23), |
| 1119 | (6, 9, 17, 31), (6, 9, 18, 30), (6, 9, 19, 33), (6, 9, 20, 37), (6, 9, 21, 28), |
| 1120 | (6, 9, 22, 34), (6, 10, 11, 13), (6, 10, 12, 34), (6, 10, 14, 31), |
| 1121 | (6, 10, 16, 36), (6, 10, 17, 26), (6, 10, 20, 35), (6, 10, 21, 33), |
| 1122 | (6, 10, 23, 28), (6, 10, 25, 29), (6, 11, 12, 30), (6, 11, 14, 32), |
| 1123 | (6, 11, 15, 35), (6, 11, 16, 26), (6, 11, 17, 19), (6, 11, 18, 20), |
| 1124 | (6, 11, 24, 25), (6, 11, 27, 31), (6, 11, 28, 36), (6, 12, 13, 36), |
| 1125 | (6, 12, 15, 18), (6, 12, 16, 24), (6, 12, 19, 37), (6, 12, 22, 35), |
| 1126 | (6, 12, 25, 31), (6, 12, 26, 33), (6, 12, 28, 29), (6, 13, 14, 17), |
| 1127 | (6, 13, 16, 27), (6, 13, 19, 26), (6, 13, 20, 28), (6, 13, 21, 37), |
| 1128 | (6, 13, 23, 35), (6, 13, 24, 30), (6, 13, 29, 32), (6, 13, 33, 34), |
| 1129 | (6, 14, 16, 33), (6, 14, 18, 24), (6, 14, 19, 36), (6, 14, 20, 21), |
| 1130 | (6, 14, 22, 27), (6, 14, 23, 25), (6, 14, 30, 37), (6, 15, 17, 36), |
| 1131 | (6, 15, 19, 29), (6, 15, 20, 24), (6, 15, 21, 31), (6, 15, 22, 32), |
| 1132 | (6, 15, 25, 34), (6, 15, 28, 30), (6, 15, 33, 37), (6, 16, 18, 21), |
| 1133 | (6, 16, 19, 32), (6, 16, 20, 22), (6, 16, 25, 35), (6, 16, 28, 37), |
| 1134 | (6, 17, 18, 22), (6, 17, 20, 30), (6, 17, 21, 32), (6, 17, 23, 37), |
| 1135 | (6, 17, 25, 27), (6, 17, 33, 35), (6, 18, 23, 26), (6, 18, 27, 34), |
| 1136 | (6, 18, 28, 31), (6, 18, 29, 33), (6, 18, 32, 35), (6, 19, 21, 35), |
| 1137 | (6, 19, 22, 30), (6, 19, 23, 27), (6, 19, 28, 34), (6, 20, 23, 32), |
| 1138 | (6, 20, 25, 26), (6, 20, 31, 34), (6, 20, 33, 36), (6, 21, 23, 29), |
| 1139 | (6, 21, 24, 26), (6, 21, 30, 34), (6, 22, 24, 33), (6, 22, 25, 37), |
| 1140 | (6, 22, 29, 36), (6, 23, 30, 33), (6, 24, 27, 32), (6, 24, 28, 35), |
| 1141 | (6, 24, 29, 34), (6, 24, 31, 37), (6, 25, 28, 32), (6, 26, 27, 37), |
| 1142 | (6, 26, 29, 30), (6, 26, 32, 36), (6, 27, 28, 33), (6, 27, 30, 36), |
| 1143 | (6, 29, 31, 35), (6, 30, 31, 32), (6, 34, 36, 37), (7, 8, 9, 21), |
| 1144 | (7, 8, 12, 34), (7, 8, 13, 24), (7, 8, 14, 19), (7, 8, 16, 17), (7, 8, 18, 25), |
| 1145 | (7, 8, 23, 29), (7, 8, 27, 32), (7, 8, 28, 30), (7, 8, 33, 35), (7, 8, 36, 37), |
| 1146 | (7, 9, 10, 17), (7, 9, 11, 16), (7, 9, 12, 35), (7, 9, 13, 22), (7, 9, 15, 30), |
| 1147 | (7, 9, 18, 29), (7, 9, 19, 20), (7, 9, 23, 32), (7, 9, 24, 25), (7, 9, 26, 37), |
| 1148 | (7, 9, 28, 36), (7, 10, 11, 25), (7, 10, 12, 30), (7, 10, 14, 26), |
| 1149 | (7, 10, 15, 27), (7, 10, 16, 24), (7, 10, 18, 32), (7, 10, 19, 31), |
| 1150 | (7, 10, 20, 34), (7, 10, 22, 29), (7, 10, 23, 35), (7, 11, 12, 14), |
| 1151 | (7, 11, 13, 35), (7, 11, 15, 32), (7, 11, 17, 37), (7, 11, 18, 27), |
| 1152 | (7, 11, 21, 36), (7, 11, 22, 34), (7, 11, 24, 29), (7, 11, 26, 30), |
| 1153 | (7, 12, 13, 31), (7, 12, 15, 33), (7, 12, 16, 36), (7, 12, 17, 27), |
| 1154 | (7, 12, 18, 20), (7, 12, 19, 21), (7, 12, 25, 26), (7, 12, 28, 32), |
| 1155 | (7, 12, 29, 37), (7, 13, 14, 37), (7, 13, 16, 19), (7, 13, 17, 25), |
| 1156 | (7, 13, 23, 36), (7, 13, 26, 32), (7, 13, 27, 34), (7, 13, 29, 30), |
| 1157 | (7, 14, 15, 18), (7, 14, 17, 28), (7, 14, 20, 27), (7, 14, 21, 29), |
| 1158 | (7, 14, 24, 36), (7, 14, 25, 31), (7, 14, 30, 33), (7, 14, 34, 35), |
| 1159 | (7, 15, 17, 34), (7, 15, 19, 25), (7, 15, 20, 37), (7, 15, 21, 22), |
| 1160 | (7, 15, 23, 28), (7, 15, 24, 26), (7, 16, 18, 37), (7, 16, 20, 30), |
| 1161 | (7, 16, 21, 25), (7, 16, 22, 32), (7, 16, 23, 33), (7, 16, 26, 35), |
| 1162 | (7, 16, 29, 31), (7, 17, 19, 22), (7, 17, 20, 33), (7, 17, 21, 23), |
| 1163 | (7, 17, 26, 36), (7, 18, 19, 23), (7, 18, 21, 31), (7, 18, 22, 33), |
| 1164 | (7, 18, 26, 28), (7, 18, 34, 36), (7, 19, 24, 27), (7, 19, 28, 35), |
| 1165 | (7, 19, 29, 32), (7, 19, 30, 34), (7, 19, 33, 36), (7, 20, 22, 36), |
| 1166 | (7, 20, 23, 31), (7, 20, 24, 28), (7, 20, 29, 35), (7, 21, 24, 33), |
| 1167 | (7, 21, 26, 27), (7, 21, 32, 35), (7, 21, 34, 37), (7, 22, 24, 30), |
| 1168 | (7, 22, 25, 27), (7, 22, 31, 35), (7, 23, 25, 34), (7, 23, 30, 37), |
| 1169 | (7, 24, 31, 34), (7, 25, 28, 33), (7, 25, 29, 36), (7, 25, 30, 35), |
| 1170 | (7, 26, 29, 33), (7, 27, 30, 31), (7, 27, 33, 37), (7, 28, 29, 34), |
| 1171 | (7, 28, 31, 37), (7, 30, 32, 36), (7, 31, 32, 33), (8, 9, 10, 22), |
| 1172 | (8, 9, 13, 35), (8, 9, 14, 25), (8, 9, 15, 20), (8, 9, 17, 18), (8, 9, 19, 26), |
| 1173 | (8, 9, 24, 30), (8, 9, 28, 33), (8, 9, 29, 31), (8, 9, 34, 36), (8, 10, 11, 18), |
| 1174 | (8, 10, 12, 17), (8, 10, 13, 36), (8, 10, 14, 23), (8, 10, 16, 31), |
| 1175 | (8, 10, 19, 30), (8, 10, 20, 21), (8, 10, 24, 33), (8, 10, 25, 26), |
| 1176 | (8, 10, 29, 37), (8, 11, 12, 26), (8, 11, 13, 31), (8, 11, 15, 27), |
| 1177 | (8, 11, 16, 28), (8, 11, 17, 25), (8, 11, 19, 33), (8, 11, 20, 32), |
| 1178 | (8, 11, 21, 35), (8, 11, 23, 30), (8, 11, 24, 36), (8, 12, 13, 15), |
| 1179 | (8, 12, 14, 36), (8, 12, 16, 33), (8, 12, 19, 28), (8, 12, 22, 37), |
| 1180 | (8, 12, 23, 35), (8, 12, 25, 30), (8, 12, 27, 31), (8, 13, 14, 32), |
| 1181 | (8, 13, 16, 34), (8, 13, 17, 37), (8, 13, 18, 28), (8, 13, 19, 21), |
| 1182 | (8, 13, 20, 22), (8, 13, 26, 27), (8, 13, 29, 33), (8, 14, 17, 20), |
| 1183 | (8, 14, 18, 26), (8, 14, 24, 37), (8, 14, 27, 33), (8, 14, 28, 35), |
| 1184 | (8, 14, 30, 31), (8, 15, 16, 19), (8, 15, 18, 29), (8, 15, 21, 28), |
| 1185 | (8, 15, 22, 30), (8, 15, 25, 37), (8, 15, 26, 32), (8, 15, 31, 34), |
| 1186 | (8, 15, 35, 36), (8, 16, 18, 35), (8, 16, 20, 26), (8, 16, 22, 23), |
| 1187 | (8, 16, 24, 29), (8, 16, 25, 27), (8, 17, 21, 31), (8, 17, 22, 26), |
| 1188 | (8, 17, 23, 33), (8, 17, 24, 34), (8, 17, 27, 36), (8, 17, 30, 32), |
| 1189 | (8, 18, 20, 23), (8, 18, 21, 34), (8, 18, 22, 24), (8, 18, 27, 37), |
| 1190 | (8, 19, 20, 24), (8, 19, 22, 32), (8, 19, 23, 34), (8, 19, 27, 29), |
| 1191 | (8, 19, 35, 37), (8, 20, 25, 28), (8, 20, 29, 36), (8, 20, 30, 33), |
| 1192 | (8, 20, 31, 35), (8, 20, 34, 37), (8, 21, 23, 37), (8, 21, 24, 32), |
| 1193 | (8, 21, 25, 29), (8, 21, 30, 36), (8, 22, 25, 34), (8, 22, 27, 28), |
| 1194 | (8, 22, 33, 36), (8, 23, 25, 31), (8, 23, 26, 28), (8, 23, 32, 36), |
| 1195 | (8, 24, 26, 35), (8, 25, 32, 35), (8, 26, 29, 34), (8, 26, 30, 37), |
| 1196 | (8, 26, 31, 36), (8, 27, 30, 34), (8, 28, 31, 32), (8, 29, 30, 35), |
| 1197 | (8, 31, 33, 37), (8, 32, 33, 34), (9, 10, 11, 23), (9, 10, 14, 36), |
| 1198 | (9, 10, 15, 26), (9, 10, 16, 21), (9, 10, 18, 19), (9, 10, 20, 27), |
| 1199 | (9, 10, 25, 31), (9, 10, 29, 34), (9, 10, 30, 32), (9, 10, 35, 37), |
| 1200 | (9, 11, 12, 19), (9, 11, 13, 18), (9, 11, 14, 37), (9, 11, 15, 24), |
| 1201 | (9, 11, 17, 32), (9, 11, 20, 31), (9, 11, 21, 22), (9, 11, 25, 34), |
| 1202 | (9, 11, 26, 27), (9, 12, 13, 27), (9, 12, 14, 32), (9, 12, 16, 28), |
| 1203 | (9, 12, 17, 29), (9, 12, 18, 26), (9, 12, 20, 34), (9, 12, 21, 33), |
| 1204 | (9, 12, 22, 36), (9, 12, 24, 31), (9, 12, 25, 37), (9, 13, 14, 16), |
| 1205 | (9, 13, 15, 37), (9, 13, 17, 34), (9, 13, 20, 29), (9, 13, 24, 36), |
| 1206 | (9, 13, 26, 31), (9, 13, 28, 32), (9, 14, 15, 33), (9, 14, 17, 35), |
| 1207 | (9, 14, 19, 29), (9, 14, 20, 22), (9, 14, 21, 23), (9, 14, 27, 28), |
| 1208 | (9, 14, 30, 34), (9, 15, 18, 21), (9, 15, 19, 27), (9, 15, 28, 34), |
| 1209 | (9, 15, 29, 36), (9, 15, 31, 32), (9, 16, 17, 20), (9, 16, 19, 30), |
| 1210 | (9, 16, 22, 29), (9, 16, 23, 31), (9, 16, 27, 33), (9, 16, 32, 35), |
| 1211 | (9, 16, 36, 37), (9, 17, 19, 36), (9, 17, 21, 27), (9, 17, 23, 24), |
| 1212 | (9, 17, 25, 30), (9, 17, 26, 28), (9, 18, 22, 32), (9, 18, 23, 27), |
| 1213 | (9, 18, 24, 34), (9, 18, 25, 35), (9, 18, 28, 37), (9, 18, 31, 33), |
| 1214 | (9, 19, 21, 24), (9, 19, 22, 35), (9, 19, 23, 25), (9, 20, 21, 25), |
| 1215 | (9, 20, 23, 33), (9, 20, 24, 35), (9, 20, 28, 30), (9, 21, 26, 29), |
| 1216 | (9, 21, 30, 37), (9, 21, 31, 34), (9, 21, 32, 36), (9, 22, 25, 33), |
| 1217 | (9, 22, 26, 30), (9, 22, 31, 37), (9, 23, 26, 35), (9, 23, 28, 29), |
| 1218 | (9, 23, 34, 37), (9, 24, 26, 32), (9, 24, 27, 29), (9, 24, 33, 37), |
| 1219 | (9, 25, 27, 36), (9, 26, 33, 36), (9, 27, 30, 35), (9, 27, 32, 37), |
| 1220 | (9, 28, 31, 35), (9, 29, 32, 33), (9, 30, 31, 36), (9, 33, 34, 35), |
| 1221 | (10, 11, 12, 24), (10, 11, 15, 37), (10, 11, 16, 27), (10, 11, 17, 22), |
| 1222 | (10, 11, 19, 20), (10, 11, 21, 28), (10, 11, 26, 32), (10, 11, 30, 35), |
| 1223 | (10, 11, 31, 33), (10, 12, 13, 20), (10, 12, 14, 19), (10, 12, 16, 25), |
| 1224 | (10, 12, 18, 33), (10, 12, 21, 32), (10, 12, 22, 23), (10, 12, 26, 35), |
| 1225 | (10, 12, 27, 28), (10, 13, 14, 28), (10, 13, 15, 33), (10, 13, 17, 29), |
| 1226 | (10, 13, 18, 30), (10, 13, 19, 27), (10, 13, 21, 35), (10, 13, 22, 34), |
| 1227 | (10, 13, 23, 37), (10, 13, 25, 32), (10, 14, 15, 17), (10, 14, 18, 35), |
| 1228 | (10, 14, 21, 30), (10, 14, 25, 37), (10, 14, 27, 32), (10, 14, 29, 33), |
| 1229 | (10, 15, 16, 34), (10, 15, 18, 36), (10, 15, 20, 30), (10, 15, 21, 23), |
| 1230 | (10, 15, 22, 24), (10, 15, 28, 29), (10, 15, 31, 35), (10, 16, 19, 22), |
| 1231 | (10, 16, 20, 28), (10, 16, 29, 35), (10, 16, 30, 37), (10, 16, 32, 33), |
| 1232 | (10, 17, 18, 21), (10, 17, 20, 31), (10, 17, 23, 30), (10, 17, 24, 32), |
| 1233 | (10, 17, 28, 34), (10, 17, 33, 36), (10, 18, 20, 37), (10, 18, 22, 28), |
| 1234 | (10, 18, 24, 25), (10, 18, 26, 31), (10, 18, 27, 29), (10, 19, 23, 33), |
| 1235 | (10, 19, 24, 28), (10, 19, 25, 35), (10, 19, 26, 36), (10, 19, 32, 34), |
| 1236 | (10, 20, 22, 25), (10, 20, 23, 36), (10, 20, 24, 26), (10, 21, 22, 26), |
| 1237 | (10, 21, 24, 34), (10, 21, 25, 36), (10, 21, 29, 31), (10, 22, 27, 30), |
| 1238 | (10, 22, 32, 35), (10, 22, 33, 37), (10, 23, 26, 34), (10, 23, 27, 31), |
| 1239 | (10, 24, 27, 36), (10, 24, 29, 30), (10, 25, 27, 33), (10, 25, 28, 30), |
| 1240 | (10, 26, 28, 37), (10, 27, 34, 37), (10, 28, 31, 36), (10, 29, 32, 36), |
| 1241 | (10, 30, 33, 34), (10, 31, 32, 37), (10, 34, 35, 36), (11, 12, 13, 25), |
| 1242 | (11, 12, 17, 28), (11, 12, 18, 23), (11, 12, 20, 21), (11, 12, 22, 29), |
| 1243 | (11, 12, 27, 33), (11, 12, 31, 36), (11, 12, 32, 34), (11, 13, 14, 21), |
| 1244 | (11, 13, 15, 20), (11, 13, 17, 26), (11, 13, 19, 34), (11, 13, 22, 33), |
| 1245 | (11, 13, 23, 24), (11, 13, 27, 36), (11, 13, 28, 29), (11, 14, 15, 29), |
| 1246 | (11, 14, 16, 34), (11, 14, 18, 30), (11, 14, 19, 31), (11, 14, 20, 28), |
| 1247 | (11, 14, 22, 36), (11, 14, 23, 35), (11, 14, 26, 33), (11, 15, 16, 18), |
| 1248 | (11, 15, 19, 36), (11, 15, 22, 31), (11, 15, 28, 33), (11, 15, 30, 34), |
| 1249 | (11, 16, 17, 35), (11, 16, 19, 37), (11, 16, 21, 31), (11, 16, 22, 24), |
| 1250 | (11, 16, 23, 25), (11, 16, 29, 30), (11, 16, 32, 36), (11, 17, 20, 23), |
| 1251 | (11, 17, 21, 29), (11, 17, 30, 36), (11, 17, 33, 34), (11, 18, 19, 22), |
| 1252 | (11, 18, 21, 32), (11, 18, 24, 31), (11, 18, 25, 33), (11, 18, 29, 35), |
| 1253 | (11, 18, 34, 37), (11, 19, 23, 29), (11, 19, 25, 26), (11, 19, 27, 32), |
| 1254 | (11, 19, 28, 30), (11, 20, 24, 34), (11, 20, 25, 29), (11, 20, 26, 36), |
| 1255 | (11, 20, 27, 37), (11, 20, 33, 35), (11, 21, 23, 26), (11, 21, 24, 37), |
| 1256 | (11, 21, 25, 27), (11, 22, 23, 27), (11, 22, 25, 35), (11, 22, 26, 37), |
| 1257 | (11, 22, 30, 32), (11, 23, 28, 31), (11, 23, 33, 36), (11, 24, 27, 35), |
| 1258 | (11, 24, 28, 32), (11, 25, 28, 37), (11, 25, 30, 31), (11, 26, 28, 34), |
| 1259 | (11, 26, 29, 31), (11, 29, 32, 37), (11, 30, 33, 37), (11, 31, 34, 35), |
| 1260 | (11, 35, 36, 37), (12, 13, 14, 26), (12, 13, 18, 29), (12, 13, 19, 24), |
| 1261 | (12, 13, 21, 22), (12, 13, 23, 30), (12, 13, 28, 34), (12, 13, 32, 37), |
| 1262 | (12, 13, 33, 35), (12, 14, 15, 22), (12, 14, 16, 21), (12, 14, 18, 27), |
| 1263 | (12, 14, 20, 35), (12, 14, 23, 34), (12, 14, 24, 25), (12, 14, 28, 37), |
| 1264 | (12, 14, 29, 30), (12, 15, 16, 30), (12, 15, 17, 35), (12, 15, 19, 31), |
| 1265 | (12, 15, 20, 32), (12, 15, 21, 29), (12, 15, 23, 37), (12, 15, 24, 36), |
| 1266 | (12, 15, 27, 34), (12, 16, 17, 19), (12, 16, 20, 37), (12, 16, 23, 32), |
| 1267 | (12, 16, 29, 34), (12, 16, 31, 35), (12, 17, 18, 36), (12, 17, 22, 32), |
| 1268 | (12, 17, 23, 25), (12, 17, 24, 26), (12, 17, 30, 31), (12, 17, 33, 37), |
| 1269 | (12, 18, 21, 24), (12, 18, 22, 30), (12, 18, 31, 37), (12, 18, 34, 35), |
| 1270 | (12, 19, 20, 23), (12, 19, 22, 33), (12, 19, 25, 32), (12, 19, 26, 34), |
| 1271 | (12, 19, 30, 36), (12, 20, 24, 30), (12, 20, 26, 27), (12, 20, 28, 33), |
| 1272 | (12, 20, 29, 31), (12, 21, 25, 35), (12, 21, 26, 30), (12, 21, 27, 37), |
| 1273 | (12, 21, 34, 36), (12, 22, 24, 27), (12, 22, 26, 28), (12, 23, 24, 28), |
| 1274 | (12, 23, 26, 36), (12, 23, 31, 33), (12, 24, 29, 32), (12, 24, 34, 37), |
| 1275 | (12, 25, 28, 36), (12, 25, 29, 33), (12, 26, 31, 32), (12, 27, 29, 35), |
| 1276 | (12, 27, 30, 32), (12, 32, 35, 36), (13, 14, 15, 27), (13, 14, 19, 30), |
| 1277 | (13, 14, 20, 25), (13, 14, 22, 23), (13, 14, 24, 31), (13, 14, 29, 35), |
| 1278 | (13, 14, 34, 36), (13, 15, 16, 23), (13, 15, 17, 22), (13, 15, 19, 28), |
| 1279 | (13, 15, 21, 36), (13, 15, 24, 35), (13, 15, 25, 26), (13, 15, 30, 31), |
| 1280 | (13, 16, 17, 31), (13, 16, 18, 36), (13, 16, 20, 32), (13, 16, 21, 33), |
| 1281 | (13, 16, 22, 30), (13, 16, 25, 37), (13, 16, 28, 35), (13, 17, 18, 20), |
| 1282 | (13, 17, 24, 33), (13, 17, 30, 35), (13, 17, 32, 36), (13, 18, 19, 37), |
| 1283 | (13, 18, 23, 33), (13, 18, 24, 26), (13, 18, 25, 27), (13, 18, 31, 32), |
| 1284 | (13, 19, 22, 25), (13, 19, 23, 31), (13, 19, 35, 36), (13, 20, 21, 24), |
| 1285 | (13, 20, 23, 34), (13, 20, 26, 33), (13, 20, 27, 35), (13, 20, 31, 37), |
| 1286 | (13, 21, 25, 31), (13, 21, 27, 28), (13, 21, 29, 34), (13, 21, 30, 32), |
| 1287 | (13, 22, 26, 36), (13, 22, 27, 31), (13, 22, 35, 37), (13, 23, 25, 28), |
| 1288 | (13, 23, 27, 29), (13, 24, 25, 29), (13, 24, 27, 37), (13, 24, 32, 34), |
| 1289 | (13, 25, 30, 33), (13, 26, 29, 37), (13, 26, 30, 34), (13, 27, 32, 33), |
| 1290 | (13, 28, 30, 36), (13, 28, 31, 33), (13, 33, 36, 37), (14, 15, 16, 28), |
| 1291 | (14, 15, 20, 31), (14, 15, 21, 26), (14, 15, 23, 24), (14, 15, 25, 32), |
| 1292 | (14, 15, 30, 36), (14, 15, 35, 37), (14, 16, 17, 24), (14, 16, 18, 23), |
| 1293 | (14, 16, 20, 29), (14, 16, 22, 37), (14, 16, 25, 36), (14, 16, 26, 27), |
| 1294 | (14, 16, 31, 32), (14, 17, 18, 32), (14, 17, 19, 37), (14, 17, 21, 33), |
| 1295 | (14, 17, 22, 34), (14, 17, 23, 31), (14, 17, 29, 36), (14, 18, 19, 21), |
| 1296 | (14, 18, 25, 34), (14, 18, 31, 36), (14, 18, 33, 37), (14, 19, 24, 34), |
| 1297 | (14, 19, 25, 27), (14, 19, 26, 28), (14, 19, 32, 33), (14, 20, 23, 26), |
| 1298 | (14, 20, 24, 32), (14, 20, 36, 37), (14, 21, 22, 25), (14, 21, 24, 35), |
| 1299 | (14, 21, 27, 34), (14, 21, 28, 36), (14, 22, 26, 32), (14, 22, 28, 29), |
| 1300 | (14, 22, 30, 35), (14, 22, 31, 33), (14, 23, 27, 37), (14, 23, 28, 32), |
| 1301 | (14, 24, 26, 29), (14, 24, 28, 30), (14, 25, 26, 30), (14, 25, 33, 35), |
| 1302 | (14, 26, 31, 34), (14, 27, 31, 35), (14, 28, 33, 34), (14, 29, 31, 37), |
| 1303 | (14, 29, 32, 34), (15, 16, 17, 29), (15, 16, 21, 32), (15, 16, 22, 27), |
| 1304 | (15, 16, 24, 25), (15, 16, 26, 33), (15, 16, 31, 37), (15, 17, 18, 25), |
| 1305 | (15, 17, 19, 24), (15, 17, 21, 30), (15, 17, 26, 37), (15, 17, 27, 28), |
| 1306 | (15, 17, 32, 33), (15, 18, 19, 33), (15, 18, 22, 34), (15, 18, 23, 35), |
| 1307 | (15, 18, 24, 32), (15, 18, 30, 37), (15, 19, 20, 22), (15, 19, 26, 35), |
| 1308 | (15, 19, 32, 37), (15, 20, 25, 35), (15, 20, 26, 28), (15, 20, 27, 29), |
| 1309 | (15, 20, 33, 34), (15, 21, 24, 27), (15, 21, 25, 33), (15, 22, 23, 26), |
| 1310 | (15, 22, 25, 36), (15, 22, 28, 35), (15, 22, 29, 37), (15, 23, 27, 33), |
| 1311 | (15, 23, 29, 30), (15, 23, 31, 36), (15, 23, 32, 34), (15, 24, 29, 33), |
| 1312 | (15, 25, 27, 30), (15, 25, 29, 31), (15, 26, 27, 31), (15, 26, 34, 36), |
| 1313 | (15, 27, 32, 35), (15, 28, 32, 36), (15, 29, 34, 35), (15, 30, 33, 35), |
| 1314 | (16, 17, 18, 30), (16, 17, 22, 33), (16, 17, 23, 28), (16, 17, 25, 26), |
| 1315 | (16, 17, 27, 34), (16, 18, 19, 26), (16, 18, 20, 25), (16, 18, 22, 31), |
| 1316 | (16, 18, 28, 29), (16, 18, 33, 34), (16, 19, 20, 34), (16, 19, 23, 35), |
| 1317 | (16, 19, 24, 36), (16, 19, 25, 33), (16, 20, 21, 23), (16, 20, 27, 36), |
| 1318 | (16, 21, 26, 36), (16, 21, 27, 29), (16, 21, 28, 30), (16, 21, 34, 35), |
| 1319 | (16, 22, 25, 28), (16, 22, 26, 34), (16, 23, 24, 27), (16, 23, 26, 37), |
| 1320 | (16, 23, 29, 36), (16, 24, 28, 34), (16, 24, 30, 31), (16, 24, 32, 37), |
| 1321 | (16, 24, 33, 35), (16, 25, 30, 34), (16, 26, 28, 31), (16, 26, 30, 32), |
| 1322 | (16, 27, 28, 32), (16, 27, 35, 37), (16, 28, 33, 36), (16, 29, 33, 37), |
| 1323 | (16, 30, 35, 36), (16, 31, 34, 36), (17, 18, 19, 31), (17, 18, 23, 34), |
| 1324 | (17, 18, 24, 29), (17, 18, 26, 27), (17, 18, 28, 35), (17, 19, 20, 27), |
| 1325 | (17, 19, 21, 26), (17, 19, 23, 32), (17, 19, 29, 30), (17, 19, 34, 35), |
| 1326 | (17, 20, 21, 35), (17, 20, 24, 36), (17, 20, 25, 37), (17, 20, 26, 34), |
| 1327 | (17, 21, 22, 24), (17, 21, 28, 37), (17, 22, 27, 37), (17, 22, 28, 30), |
| 1328 | (17, 22, 29, 31), (17, 22, 35, 36), (17, 23, 26, 29), (17, 23, 27, 35), |
| 1329 | (17, 24, 25, 28), (17, 24, 30, 37), (17, 25, 29, 35), (17, 25, 31, 32), |
| 1330 | (17, 25, 34, 36), (17, 26, 31, 35), (17, 27, 29, 32), (17, 27, 31, 33), |
| 1331 | (17, 28, 29, 33), (17, 29, 34, 37), (17, 31, 36, 37), (17, 32, 35, 37), |
| 1332 | (18, 19, 20, 32), (18, 19, 24, 35), (18, 19, 25, 30), (18, 19, 27, 28), |
| 1333 | (18, 19, 29, 36), (18, 20, 21, 28), (18, 20, 22, 27), (18, 20, 24, 33), |
| 1334 | (18, 20, 30, 31), (18, 20, 35, 36), (18, 21, 22, 36), (18, 21, 25, 37), |
| 1335 | (18, 21, 27, 35), (18, 22, 23, 25), (18, 23, 29, 31), (18, 23, 30, 32), |
| 1336 | (18, 23, 36, 37), (18, 24, 27, 30), (18, 24, 28, 36), (18, 25, 26, 29), |
| 1337 | (18, 26, 30, 36), (18, 26, 32, 33), (18, 26, 35, 37), (18, 27, 32, 36), |
| 1338 | (18, 28, 30, 33), (18, 28, 32, 34), (18, 29, 30, 34), (19, 20, 21, 33), |
| 1339 | (19, 20, 25, 36), (19, 20, 26, 31), (19, 20, 28, 29), (19, 20, 30, 37), |
| 1340 | (19, 21, 22, 29), (19, 21, 23, 28), (19, 21, 25, 34), (19, 21, 31, 32), |
| 1341 | (19, 21, 36, 37), (19, 22, 23, 37), (19, 22, 28, 36), (19, 23, 24, 26), |
| 1342 | (19, 24, 30, 32), (19, 24, 31, 33), (19, 25, 28, 31), (19, 25, 29, 37), |
| 1343 | (19, 26, 27, 30), (19, 27, 31, 37), (19, 27, 33, 34), (19, 28, 33, 37), |
| 1344 | (19, 29, 31, 34), (19, 29, 33, 35), (19, 30, 31, 35), (20, 21, 22, 34), |
| 1345 | (20, 21, 26, 37), (20, 21, 27, 32), (20, 21, 29, 30), (20, 22, 23, 30), |
| 1346 | (20, 22, 24, 29), (20, 22, 26, 35), (20, 22, 32, 33), (20, 23, 29, 37), |
| 1347 | (20, 24, 25, 27), (20, 25, 31, 33), (20, 25, 32, 34), (20, 26, 29, 32), |
| 1348 | (20, 27, 28, 31), (20, 28, 34, 35), (20, 30, 32, 35), (20, 30, 34, 36), |
| 1349 | (20, 31, 32, 36), (21, 22, 23, 35), (21, 22, 28, 33), (21, 22, 30, 31), |
| 1350 | (21, 23, 24, 31), (21, 23, 25, 30), (21, 23, 27, 36), (21, 23, 33, 34), |
| 1351 | (21, 25, 26, 28), (21, 26, 32, 34), (21, 26, 33, 35), (21, 27, 30, 33), |
| 1352 | (21, 28, 29, 32), (21, 29, 35, 36), (21, 31, 33, 36), (21, 31, 35, 37), |
| 1353 | (21, 32, 33, 37), (22, 23, 24, 36), (22, 23, 29, 34), (22, 23, 31, 32), |
| 1354 | (22, 24, 25, 32), (22, 24, 26, 31), (22, 24, 28, 37), (22, 24, 34, 35), |
| 1355 | (22, 26, 27, 29), (22, 27, 33, 35), (22, 27, 34, 36), (22, 28, 31, 34), |
| 1356 | (22, 29, 30, 33), (22, 30, 36, 37), (22, 32, 34, 37), (23, 24, 25, 37), |
| 1357 | (23, 24, 30, 35), (23, 24, 32, 33), (23, 25, 26, 33), (23, 25, 27, 32), |
| 1358 | (23, 25, 35, 36), (23, 27, 28, 30), (23, 28, 34, 36), (23, 28, 35, 37), |
| 1359 | (23, 29, 32, 35), (23, 30, 31, 34), (24, 25, 31, 36), (24, 25, 33, 34), |
| 1360 | (24, 26, 27, 34), (24, 26, 28, 33), (24, 26, 36, 37), (24, 28, 29, 31), |
| 1361 | (24, 29, 35, 37), (24, 30, 33, 36), (24, 31, 32, 35), (25, 26, 32, 37), |
| 1362 | (25, 26, 34, 35), (25, 27, 28, 35), (25, 27, 29, 34), (25, 29, 30, 32), |
| 1363 | (25, 31, 34, 37), (25, 32, 33, 36), (26, 27, 35, 36), (26, 28, 29, 36), |
| 1364 | (26, 28, 30, 35), (26, 30, 31, 33), (26, 33, 34, 37), (27, 28, 36, 37), |
| 1365 | (27, 29, 30, 37), (27, 29, 31, 36), (27, 31, 32, 34), (28, 30, 32, 37), |
| 1366 | (28, 32, 33, 35), (29, 33, 34, 36), (30, 34, 35, 37)) |