Ticket #14476: trac_14476_trac_links.patch

File trac_14476_trac_links.patch, 5.0 KB (added by chapoton, 8 years ago)
  • sage/schemes/elliptic_curves/ell_local_data.py

    # HG changeset patch
    # User Frederic Chapoton <chapoton at math.univ-lyon1.fr>
    # Date 1368902805 -7200
    # Node ID 1774e0ec72a2ea1f0188010a4a39cdaa84bc6cb1
    # Parent  3b1f18c23ff4650cc79d9ddbf657a9807a0e88ba
    trac #14476 add trac links
    
    diff --git a/sage/schemes/elliptic_curves/ell_local_data.py b/sage/schemes/elliptic_curves/ell_local_data.py
    a b class EllipticCurveLocalData(SageObject) 
    339339            sage: E.local_data(ZZ.ideal(2), algorithm="pari").minimal_model()
    340340            Elliptic Curve defined by y^2 = x^3 - x^2 - 3*x + 2 over Rational Field
    341341
    342         trac 14476::
     342        :trac:`14476`::
    343343
    344344            sage: t = QQ['t'].0
    345345            sage: K.<g> = NumberField(t^4 - t^3-3*t^2 - t +1)
    class EllipticCurveLocalData(SageObject) 
    647647        - ``cp`` (int) is the Tamagawa number
    648648
    649649
    650         EXAMPLES (this raised a type error in sage prior to 4.4.4, see ticket #7930) ::
     650        EXAMPLES (this raised a type error in sage prior to 4.4.4, see :trac:`7930`) ::
    651651
    652652            sage: E = EllipticCurve('99d1')
    653653                         
    class EllipticCurveLocalData(SageObject) 
    664664
    665665        EXAMPLES:
    666666
    667         The following example shows that the bug at #9324 is fixed::
     667        The following example shows that the bug at :trac:`9324` is fixed::
    668668
    669669            sage: K.<a> = NumberField(x^2-x+6)
    670670            sage: E = EllipticCurve([0,0,0,-53160*a-43995,-5067640*a+19402006])
    671671            sage: E.conductor() # indirect doctest
    672672            Fractional ideal (18, 6*a)
    673673
    674         The following example shows that the bug at #9417 is fixed::
     674        The following example shows that the bug at :trac:`9417` is fixed::
    675675
    676676            sage: K.<a> = NumberField(x^2+18*x+1)
    677677            sage: E = EllipticCurve(K, [0, -36, 0, 320, 0])
  • sage/schemes/elliptic_curves/ell_number_field.py

    diff --git a/sage/schemes/elliptic_curves/ell_number_field.py b/sage/schemes/elliptic_curves/ell_number_field.py
    a b class EllipticCurve_number_field(Ellipti 
    573573            sage: E.global_integral_model()
    574574            Elliptic Curve defined by y^2 + (-i)*x*y + (-25*i)*y = x^3 + 5*i*x^2 + 125*i*x + 3125*i over Number Field in i with defining polynomial x^2 + 1
    575575
    576         trac #7935::
     576        :trac:`7935`::
    577577
    578578            sage: K.<a> = NumberField(x^2-38)
    579579            sage: E = EllipticCurve([a,1/2])
    580580            sage: E.global_integral_model()
    581581            Elliptic Curve defined by y^2 = x^3 + 1444*a*x + 27436 over Number Field in a with defining polynomial x^2 - 38
    582582
    583         trac #9266::
     583        :trac:`9266`::
    584584   
    585585            sage: K.<s> = NumberField(x^2-5)
    586586            sage: w = (1+s)/2
    class EllipticCurve_number_field(Ellipti 
    588588            sage: E.global_integral_model()
    589589            Elliptic Curve defined by y^2 = x^3 + 2*x + (1/2*s+1/2) over Number Field in s with defining polynomial x^2 - 5
    590590
    591         trac #12151::
     591        :trac:`12151`::
    592592
    593593            sage: K.<v> = NumberField(x^2 + 161*x - 150)
    594594            sage: E = EllipticCurve([25105/216*v - 3839/36, 634768555/7776*v - 98002625/1296, 634768555/7776*v - 98002625/1296, 0, 0])
    595595            sage: E.global_integral_model()
    596596            Elliptic Curve defined by y^2 + (33872485050625*v-31078224284250)*x*y + (2020602604156076340058146664245468750000*v-1871778534673615560803175189398437500000)*y = x^3 + (6933305282258321342920781250*v-6422644400723486559914062500)*x^2 over Number Field in v with defining polynomial x^2 + 161*x - 150
    597597
    598         trac #14476::
     598        :trac:`14476`::
    599599
    600600            sage: R.<t> = QQ[]
    601601            sage: K.<g> = NumberField(t^4 - t^3 - 3*t^2 - t + 1)
    class EllipticCurve_number_field(Ellipti 
    753753            Kodaira Symbol: I0
    754754            Tamagawa Number: 1
    755755
    756         An example raised in \#3897::
     756        An example raised in :trac:`3897`::
    757757
    758758            sage: E = EllipticCurve([1,1])
    759759            sage: E.local_data(3)
    class EllipticCurve_number_field(Ellipti 
    11961196            sage: [dav.tamagawa_number() for dav in da]
    11971197            [1, 1]
    11981198
    1199         An example over `\mathbb{Q}` (trac #9413)::
     1199        An example over `\mathbb{Q}` (:trac:`9413`)::
    12001200
    12011201            sage: E = EllipticCurve('30a')
    12021202            sage: E.tamagawa_product_bsd()
    class EllipticCurve_number_field(Ellipti 
    12921292            sage: E.conductor()
    12931293            Fractional ideal (1)
    12941294
    1295         An example which used to fail (see trac #5307)::
     1295        An example which used to fail (see :trac:`5307`)::
    12961296
    12971297            sage: K.<w>=NumberField(x^2+x+6)
    12981298            sage: E=EllipticCurve([w,-1,0,-w-6,0])
    12991299            sage: E.conductor()
    13001300            Fractional ideal (86304, w + 5898)
    13011301
    1302         An example raised in \#11346::
     1302        An example raised in :trac:`11346`::
    13031303
    13041304            sage: K.<g> = NumberField(x^2 - x - 1)
    13051305            sage: E1 = EllipticCurve(K,[0,0,0,-1/48,-161/864])