| 1 | r""" |
| 2 | Hypergraph generators. |
| 3 | |
| 4 | At the moment this module only implement one method, which calls Brendan McKay's |
| 5 | Nauty (`<http://cs.anu.edu.au/~bdm/nauty/>`_) to enumerate hypergraphs up to |
| 6 | isomorphism. |
| 7 | """ |
| 8 | |
| 9 | class HyperGraphGenerators(): |
| 10 | r""" |
| 11 | A class consisting of constructors for common hypergraphs. |
| 12 | """ |
| 13 | |
| 14 | def nauty(self, number_of_sets, number_of_vertices, |
| 15 | multiple_sets = False, |
| 16 | vertex_min_degree = None, vertex_max_degree = None, |
| 17 | set_max_size = None, set_min_size = None, |
| 18 | regular = False, uniform = False, |
| 19 | max_intersection = None, |
| 20 | connected = False, |
| 21 | options="", debug=False): |
| 22 | r""" |
| 23 | Enumerates hypergraphs up to isomorphism using Nauty. |
| 24 | |
| 25 | INPUT: |
| 26 | |
| 27 | - ``number_of_sets``, ``number_of_vertices`` (integers) |
| 28 | |
| 29 | - ``multiple_sets`` (boolean) -- whether to allow several sets |
| 30 | of the hypergraph to be equal (set to ``False`` by default). |
| 31 | |
| 32 | - ``vertex_min_degree``, ``vertex_max_degree`` (integers) -- define the |
| 33 | maximum and minimum degree of an element from the ground set (i.e. the |
| 34 | number of sets which contain it). Set to ``None`` by default. |
| 35 | |
| 36 | - ``set_min_size``, ``set_max_size`` (integers) -- define the maximum |
| 37 | and minimum size of a set. Set to ``None`` by default. |
| 38 | |
| 39 | - ``regular`` (integer) -- if set to an integer value `k`, requires the |
| 40 | hypergraphs to be `k`-regular. It is actually a shortcut for the |
| 41 | corresponing min/max values. |
| 42 | |
| 43 | - ``uniform`` (integer) -- if set to an integer value `k`, requires the |
| 44 | hypergraphs to be `k`-uniform. It is actually a shortcut for the |
| 45 | corresponing min/max values. |
| 46 | |
| 47 | - ``max_intersection`` (integer) -- constraints the maximum cardinality |
| 48 | of the intersection of two sets fro the hypergraphs. Set to ``None`` |
| 49 | by default. |
| 50 | |
| 51 | - ``connected`` (boolean) -- whether to require the hypergraphs to be |
| 52 | connected. Set to ``False`` by default. |
| 53 | |
| 54 | - ``debug`` (boolean) -- if ``True`` the first line of genbg's output to |
| 55 | standard error is captured and the first call to the generator's |
| 56 | ``next()`` function will return this line as a string. A line leading |
| 57 | with ">A" indicates a successful initiation of the program with some |
| 58 | information on the arguments, while a line beginning with ">E" |
| 59 | indicates an error with the input. |
| 60 | |
| 61 | - ``options`` (string) -- anything else that should be forwarded as |
| 62 | input to Nauty's genbg. See its documentation for more information : |
| 63 | `<http://cs.anu.edu.au/~bdm/nauty/>`_. |
| 64 | |
| 65 | .. NOTE:: |
| 66 | |
| 67 | For genbg the *first class* elements are vertices, and *second |
| 68 | class* elements are the hypergraph's sets. |
| 69 | |
| 70 | OUTPUT: |
| 71 | |
| 72 | A tuple of tuples. |
| 73 | |
| 74 | EXAMPLES: |
| 75 | |
| 76 | Small hypergraphs:: |
| 77 | |
| 78 | sage: list(hypergraphs.nauty(4,2)) # optional - nauty |
| 79 | [((), (0,), (1,), (0, 1))] |
| 80 | |
| 81 | Only connected ones:: |
| 82 | |
| 83 | sage: list(hypergraphs.nauty(2,2, connected = True)) # optional - nauty |
| 84 | [((0,), (0, 1))] |
| 85 | |
| 86 | Non-empty sets only:: |
| 87 | |
| 88 | sage: list(hypergraphs.nauty(3,2, set_min_size = 1)) # optional - nauty |
| 89 | [((0,), (1,), (0, 1))] |
| 90 | |
| 91 | The Fano Plane, as the only 3-uniform hypergraph with 7 sets and 7 |
| 92 | vertices:: |
| 93 | |
| 94 | sage: fano = hypergraphs.nauty(7,7, uniform = 3, max_intersection =1).next() # optional - nauty |
| 95 | sage: print fano # optional - nauty |
| 96 | ((0, 1, 2), (0, 3, 4), (0, 5, 6), (1, 3, 5), (2, 4, 5), (2, 3, 6), (1, 4, 6)) |
| 97 | |
| 98 | The Fano Plane, as the only 3-regular hypergraph with 7 sets and 7 |
| 99 | vertices:: |
| 100 | |
| 101 | sage: fano = hypergraphs.nauty(7,7, regular = 3, max_intersection =1).next() # optional - nauty |
| 102 | sage: print fano # optional - nauty |
| 103 | ((0, 1, 2), (0, 3, 4), (0, 5, 6), (1, 3, 5), (2, 4, 5), (2, 3, 6), (1, 4, 6)) |
| 104 | """ |
| 105 | import subprocess |
| 106 | from sage.misc.package import is_package_installed |
| 107 | if not is_package_installed("nauty"): |
| 108 | raise TypeError("The optional nauty spkg does not seem to be installed") |
| 109 | |
| 110 | nauty_input = options |
| 111 | |
| 112 | if connected: |
| 113 | nauty_input += " -c" |
| 114 | |
| 115 | if not multiple_sets: |
| 116 | nauty_input += " -z" |
| 117 | |
| 118 | if not max_intersection is None: |
| 119 | nauty_input += " -Z"+str(max_intersection) |
| 120 | |
| 121 | # degrees and sizes |
| 122 | if not regular is False: |
| 123 | vertex_max_degree = vertex_min_degree = regular |
| 124 | if vertex_max_degree is None: |
| 125 | vertex_max_degree = number_of_sets |
| 126 | if vertex_min_degree is None: |
| 127 | vertex_min_degree = 0 |
| 128 | |
| 129 | if not uniform is False: |
| 130 | set_max_size = set_min_size = uniform |
| 131 | if set_max_size is None: |
| 132 | set_max_size = number_of_vertices |
| 133 | if set_min_size is None: |
| 134 | set_min_size = 0 |
| 135 | |
| 136 | nauty_input += " -d"+str(vertex_min_degree)+":"+str(set_min_size) |
| 137 | nauty_input += " -D"+str(vertex_max_degree)+":"+str(set_max_size) |
| 138 | |
| 139 | |
| 140 | nauty_input += " "+str(number_of_vertices) +" "+str(number_of_sets)+" " |
| 141 | |
| 142 | sp = subprocess.Popen("nauty-genbg {0}".format(nauty_input), shell=True, |
| 143 | stdin=subprocess.PIPE, stdout=subprocess.PIPE, |
| 144 | stderr=subprocess.PIPE, close_fds=True) |
| 145 | |
| 146 | if debug: |
| 147 | yield sp.stderr.readline() |
| 148 | |
| 149 | gen = sp.stdout |
| 150 | total = number_of_sets + number_of_vertices |
| 151 | while True: |
| 152 | try: |
| 153 | s = gen.next() |
| 154 | except StopIteration: |
| 155 | raise StopIteration("Exhausted list of graphs from nauty geng") |
| 156 | |
| 157 | from sage.graphs.graph import Graph |
| 158 | G = Graph(s[:-1], format='graph6') |
| 159 | |
| 160 | yield tuple( tuple( x for x in G.neighbors(v)) for v in range(number_of_vertices, total)) |
| 161 | |
| 162 | hypergraphs = HyperGraphGenerators() |