| 1 | r""" |
| 2 | This file contains doctests for the Chapter "k-Schur function primer" |
| 3 | for the book "k-Schur functions and affine Schubert calculus" for code |
| 4 | written by Anne Schilling and Mike Zabrocki, 2012 |
| 5 | """ |
| 6 | |
| 7 | """ |
| 8 | Sage example in ./kschurnotes/notes-mike-anne.tex, line 178:: |
| 9 | |
| 10 | sage: P = Partitions(4); P |
| 11 | Partitions of the integer 4 |
| 12 | sage: P.list() |
| 13 | [[4], [3, 1], [2, 2], [2, 1, 1], [1, 1, 1, 1]] |
| 14 | |
| 15 | Sage example in ./kschurnotes/notes-mike-anne.tex, line 185:: |
| 16 | |
| 17 | sage: la=Partition([2,2]); mu=Partition([3,1]) |
| 18 | sage: mu.dominates(la) |
| 19 | True |
| 20 | |
| 21 | Sage example in ./kschurnotes/notes-mike-anne.tex, line 191:: |
| 22 | |
| 23 | sage: ord = lambda x,y: y.dominates(x) |
| 24 | sage: P = Poset([Partitions(6), ord], facade=True) |
| 25 | sage: H = P.hasse_diagram() |
| 26 | |
| 27 | Sage example in ./kschurnotes/notes-mike-anne.tex, line 202:: |
| 28 | |
| 29 | sage: la=Partition([4,3,3,3,2,2,1]) |
| 30 | sage: la.conjugate() |
| 31 | [7, 6, 4, 1] |
| 32 | sage: la.k_split(4) |
| 33 | [[4], [3, 3], [3, 2], [2, 1]] |
| 34 | |
| 35 | Sage example in ./kschurnotes/notes-mike-anne.tex, line 210:: |
| 36 | |
| 37 | sage: p = SkewPartition([[2,1],[1]]) |
| 38 | sage: p.is_connected() |
| 39 | False |
| 40 | |
| 41 | Sage example in ./kschurnotes/notes-mike-anne.tex, line 484:: |
| 42 | |
| 43 | sage: la = Partition([4,3,3,3,2,2,1]) |
| 44 | sage: kappa = la.k_skew(4); kappa |
| 45 | [[12, 8, 5, 5, 2, 2, 1], [8, 5, 2, 2]] |
| 46 | |
| 47 | Sage example in ./kschurnotes/notes-mike-anne.tex, line 490:: |
| 48 | |
| 49 | sage: kappa.row_lengths() |
| 50 | [4, 3, 3, 3, 2, 2, 1] |
| 51 | |
| 52 | Sage example in ./kschurnotes/notes-mike-anne.tex, line 495:: |
| 53 | |
| 54 | sage: tau = Core([12,8,5,5,2,2,1],5) |
| 55 | sage: mu = tau.to_bounded_partition(); mu |
| 56 | [4, 3, 3, 3, 2, 2, 1] |
| 57 | sage: mu.to_core(4) |
| 58 | [12, 8, 5, 5, 2, 2, 1] |
| 59 | |
| 60 | Sage example in ./kschurnotes/notes-mike-anne.tex, line 503:: |
| 61 | |
| 62 | sage: Cores(3,6).list() |
| 63 | [[6, 4, 2], [5, 3, 1, 1], [4, 2, 2, 1, 1], [3, 3, 2, 2, 1, 1]] |
| 64 | |
| 65 | Sage example in ./kschurnotes/notes-mike-anne.tex, line 572:: |
| 66 | |
| 67 | sage: W = WeylGroup(['A',4,1]) |
| 68 | sage: S = W.simple_reflections() |
| 69 | sage: [s.reduced_word() for s in S] |
| 70 | [[0], [1], [2], [3], [4]] |
| 71 | |
| 72 | Sage example in ./kschurnotes/notes-mike-anne.tex, line 580:: |
| 73 | |
| 74 | sage: w = W.an_element(); w |
| 75 | [ 2 0 0 1 -2] |
| 76 | [ 2 0 0 0 -1] |
| 77 | [ 1 1 0 0 -1] |
| 78 | [ 1 0 1 0 -1] |
| 79 | [ 1 0 0 1 -1] |
| 80 | sage: w.reduced_word() |
| 81 | [0, 1, 2, 3, 4] |
| 82 | sage: w = W.from_reduced_word([2,1,0]) |
| 83 | sage: w.is_affine_grassmannian() |
| 84 | True |
| 85 | |
| 86 | Sage example in ./kschurnotes/notes-mike-anne.tex, line 651:: |
| 87 | |
| 88 | sage: c = Core([7,3,1],5) |
| 89 | sage: c.affine_symmetric_group_simple_action(2) |
| 90 | [8, 4, 1, 1] |
| 91 | sage: c.affine_symmetric_group_simple_action(0) |
| 92 | [7, 3, 1] |
| 93 | |
| 94 | Sage example in ./kschurnotes/notes-mike-anne.tex, line 661:: |
| 95 | |
| 96 | sage: k=4; length=3 |
| 97 | sage: W = WeylGroup(['A',k,1]) |
| 98 | sage: G = W.affine_grassmannian_elements_of_given_length(length) |
| 99 | sage: [w.reduced_word() for w in G] |
| 100 | [[2, 1, 0], [4, 1, 0], [3, 4, 0]] |
| 101 | |
| 102 | sage: C = Cores(k+1,length) |
| 103 | sage: [c.to_grassmannian().reduced_word() for c in C] |
| 104 | [[2, 1, 0], [4, 1, 0], [3, 4, 0]] |
| 105 | |
| 106 | Sage example in ./kschurnotes/notes-mike-anne.tex, line 725:: |
| 107 | |
| 108 | sage: la = Partition([4,3,3,3,2,2,1]) |
| 109 | sage: c = la.to_core(4); c |
| 110 | [12, 8, 5, 5, 2, 2, 1] |
| 111 | sage: W = WeylGroup(['A',4,1]) |
| 112 | sage: w = W.from_reduced_word([4,1,0,2,1,4,3,2,0,4,3,1,0,4,3,2,1,0]) |
| 113 | sage: c.to_grassmannian() == w |
| 114 | True |
| 115 | |
| 116 | Sage example in ./kschurnotes/notes-mike-anne.tex, line 769:: |
| 117 | |
| 118 | sage: la = Partition([4,3,3,3,2,2,1]) |
| 119 | sage: la.k_conjugate(4) |
| 120 | [3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1] |
| 121 | |
| 122 | Sage example in ./kschurnotes/notes-mike-anne.tex, line 1080:: |
| 123 | |
| 124 | sage: c = Core([3,1,1],3) |
| 125 | sage: c.weak_covers() |
| 126 | [[4, 2, 1, 1]] |
| 127 | sage: c.strong_covers() |
| 128 | [[5, 3, 1], [4, 2, 1, 1], [3, 2, 2, 1, 1]] |
| 129 | |
| 130 | Sage example in ./kschurnotes/notes-mike-anne.tex, line 1088:: |
| 131 | |
| 132 | sage: kappa = Core([4,1],4) |
| 133 | sage: tau = Core([2,1],4) |
| 134 | sage: tau.weak_le(kappa) |
| 135 | False |
| 136 | sage: tau.strong_le(kappa) |
| 137 | True |
| 138 | |
| 139 | Sage example in ./kschurnotes/notes-mike-anne.tex, line 1097:: |
| 140 | |
| 141 | sage: C = sum(([c for c in Cores(4,m)] for m in range(7)),[]) |
| 142 | sage: ord = lambda x,y: x.weak_le(y) |
| 143 | sage: P = Poset([C, ord], cover_relations = False) |
| 144 | sage: H = P.hasse_diagram() |
| 145 | sage: view(H) #optional |
| 146 | |
| 147 | Sage example in ./kschurnotes/notes-mike-anne.tex, line 1262:: |
| 148 | |
| 149 | sage: Sym = SymmetricFunctions(QQ) |
| 150 | sage: h = Sym.homogeneous() |
| 151 | sage: m = Sym.monomial() |
| 152 | |
| 153 | Sage example in ./kschurnotes/notes-mike-anne.tex, line 1268:: |
| 154 | |
| 155 | sage: f = h[3,1]+h[2,2] |
| 156 | sage: m(f) |
| 157 | 10*m[1, 1, 1, 1] + 7*m[2, 1, 1] + 5*m[2, 2] + 4*m[3, 1] + 2*m[4] |
| 158 | |
| 159 | Sage example in ./kschurnotes/notes-mike-anne.tex, line 1275:: |
| 160 | |
| 161 | sage: f.scalar(h[2,1,1]) |
| 162 | 7 |
| 163 | sage: m(f).coefficient([2,1,1]) |
| 164 | 7 |
| 165 | |
| 166 | Sage example in ./kschurnotes/notes-mike-anne.tex, line 1283:: |
| 167 | |
| 168 | sage: p = Sym.power() |
| 169 | sage: e = Sym.elementary() |
| 170 | sage: sum( (-1)**(i-1)*e[4-i]*p[i] for i in range(1,4) ) - p[4] |
| 171 | 4*e[4] |
| 172 | sage: sum( (-1)**(i-1)*p[i]*e[4-i] for i in range(1,4) ) - p[4] |
| 173 | 1/6*p[1, 1, 1, 1] - p[2, 1, 1] + 1/2*p[2, 2] + 4/3*p[3, 1] - p[4] |
| 174 | |
| 175 | Sage example in ./kschurnotes/notes-mike-anne.tex, line 1366:: |
| 176 | |
| 177 | sage: Sym = SymmetricFunctions(QQ) |
| 178 | sage: s = Sym.schur() |
| 179 | sage: m = Sym.monomial() |
| 180 | sage: h = Sym.homogeneous() |
| 181 | sage: m(s[1,1,1]) |
| 182 | m[1, 1, 1] |
| 183 | sage: h(s[1,1,1]) |
| 184 | h[1, 1, 1] - 2*h[2, 1] + h[3] |
| 185 | |
| 186 | Sage example in ./kschurnotes/notes-mike-anne.tex, line 1377:: |
| 187 | |
| 188 | sage: p = Sym.power() |
| 189 | sage: s = Sym.schur() |
| 190 | sage: p(s[1,1,1]) |
| 191 | 1/6*p[1, 1, 1] - 1/2*p[2, 1] + 1/3*p[3] |
| 192 | sage: p(s[2,1]) |
| 193 | 1/3*p[1, 1, 1] - 1/3*p[3] |
| 194 | sage: p(s[3]) |
| 195 | 1/6*p[1, 1, 1] + 1/2*p[2, 1] + 1/3*p[3] |
| 196 | |
| 197 | Sage example in ./kschurnotes/notes-mike-anne.tex, line 1388:: |
| 198 | |
| 199 | sage: s[2,1].scalar(s[1,1,1]) |
| 200 | 0 |
| 201 | sage: s[2,1].scalar(s[2,1]) |
| 202 | 1 |
| 203 | |
| 204 | Sage example in ./kschurnotes/notes-mike-anne.tex, line 1571:: |
| 205 | |
| 206 | sage: Sym = SymmetricFunctions(FractionField(QQ['t'])) |
| 207 | sage: Qp = Sym.hall_littlewood().Qp() |
| 208 | sage: Qp.base_ring() |
| 209 | Fraction Field of Univariate Polynomial Ring in t over Rational Field |
| 210 | sage: s = Sym.schur() |
| 211 | sage: s(Qp[1,1,1]) |
| 212 | s[1, 1, 1] + (t^2+t)*s[2, 1] + t^3*s[3] |
| 213 | |
| 214 | Sage example in ./kschurnotes/notes-mike-anne.tex, line 1584:: |
| 215 | |
| 216 | sage: t = Qp.t |
| 217 | sage: s[2,1].scalar(s[3].theta_qt(t,0)) |
| 218 | t^2 - t |
| 219 | |
| 220 | Sage example in ./kschurnotes/notes-mike-anne.tex, line 1590:: |
| 221 | |
| 222 | sage: s(Qp([1,1])).hl_creation_operator([3]) |
| 223 | s[3, 1, 1] + t*s[3, 2] + (t^2+t)*s[4, 1] + t^3*s[5] |
| 224 | sage: s(Qp([3,1,1])) |
| 225 | s[3, 1, 1] + t*s[3, 2] + (t^2+t)*s[4, 1] + t^3*s[5] |
| 226 | |
| 227 | Sage example in ./kschurnotes/notes-mike-anne.tex, line 1619:: |
| 228 | |
| 229 | sage: Sym = SymmetricFunctions(FractionField(QQ['q,t'])) |
| 230 | sage: Mac = Sym.macdonald() |
| 231 | sage: H = Mac.H() |
| 232 | sage: s = Sym.schur() |
| 233 | sage: for la in Partitions(3): |
| 234 | ... print "H", la, "=", s(H(la)) |
| 235 | H [3] = q^3*s[1, 1, 1] + (q^2+q)*s[2, 1] + s[3] |
| 236 | H [2, 1] = q*s[1, 1, 1] + (q*t+1)*s[2, 1] + t*s[3] |
| 237 | H [1, 1, 1] = s[1, 1, 1] + (t^2+t)*s[2, 1] + t^3*s[3] |
| 238 | |
| 239 | Sage example in ./kschurnotes/notes-mike-anne.tex, line 1632:: |
| 240 | |
| 241 | sage: Sym = SymmetricFunctions(FractionField(QQ['t'])) |
| 242 | sage: Mac = Sym.macdonald(q=0) |
| 243 | sage: H = Mac.H() |
| 244 | sage: s = Sym.schur() |
| 245 | sage: for la in Partitions(3): |
| 246 | ... print "H",la, "=", s(H(la)) |
| 247 | H [3] = s[3] |
| 248 | H [2, 1] = s[2, 1] + t*s[3] |
| 249 | H [1, 1, 1] = s[1, 1, 1] + (t^2+t)*s[2, 1] + t^3*s[3] |
| 250 | sage: Qp = Sym.hall_littlewood().Qp() |
| 251 | sage: s(Qp[1, 1, 1]) |
| 252 | s[1, 1, 1] + (t^2+t)*s[2, 1] + t^3*s[3] |
| 253 | |
| 254 | Sage example in ./kschurnotes/notes-mike-anne.tex, line 1647:: |
| 255 | |
| 256 | sage: Sym = SymmetricFunctions(FractionField(QQ['q'])) |
| 257 | sage: Mac = Sym.macdonald(t=0) |
| 258 | sage: H = Mac.H() |
| 259 | sage: s = Sym.schur() |
| 260 | sage: for la in Partitions(3): |
| 261 | ... print "H",la, "=", s(H(la)) |
| 262 | H [3] = q^3*s[1, 1, 1] + (q^2+q)*s[2, 1] + s[3] |
| 263 | H [2, 1] = q*s[1, 1, 1] + s[2, 1] |
| 264 | H [1, 1, 1] = s[1, 1, 1] |
| 265 | |
| 266 | Sage example in ./kschurnotes/notes-mike-anne.tex, line 1852:: |
| 267 | |
| 268 | sage: SemistandardTableaux([5,2],[4,2,1]).list() |
| 269 | [[[1, 1, 1, 1, 2], [2, 3]], [[1, 1, 1, 1, 3], [2, 2]]] |
| 270 | |
| 271 | Sage example in ./kschurnotes/notes-mike-anne.tex, line 1857:: |
| 272 | |
| 273 | sage: P = Partitions(4) |
| 274 | sage: P.list() |
| 275 | [[4], [3, 1], [2, 2], [2, 1, 1], [1, 1, 1, 1]] |
| 276 | sage: n = P.cardinality(); n |
| 277 | 5 |
| 278 | sage: K = matrix(QQ,n,n, |
| 279 | ... [[SemistandardTableaux(la,mu).cardinality() |
| 280 | ... for mu in P] for la in P]) |
| 281 | sage: K |
| 282 | [1 1 1 1 1] |
| 283 | [0 1 1 2 3] |
| 284 | [0 0 1 1 2] |
| 285 | [0 0 0 1 3] |
| 286 | [0 0 0 0 1] |
| 287 | |
| 288 | Sage example in ./kschurnotes/notes-mike-anne.tex, line 1966:: |
| 289 | |
| 290 | sage: Sym = SymmetricFunctions(QQ) |
| 291 | sage: ks4 = Sym.kschur(4,t=1) |
| 292 | sage: h = Sym.homogeneous() |
| 293 | sage: ks4(h[4,3,1]) |
| 294 | ks4[4, 3, 1] + ks4[4, 4] |
| 295 | |
| 296 | sage: ks6 = Sym.kschur(6,t=1) |
| 297 | sage: ks6(h[4,3,1]) |
| 298 | ks6[4, 3, 1] + ks6[4, 4] + ks6[5, 2, 1] + 2*ks6[5, 3] |
| 299 | + ks6[6, 1, 1] + ks6[6, 2] |
| 300 | |
| 301 | Sage example in ./kschurnotes/notes-mike-anne.tex, line 1980:: |
| 302 | |
| 303 | sage: Sym = SymmetricFunctions(QQ) |
| 304 | sage: ks = Sym.kschur(3,t=1) |
| 305 | sage: ks.realization_of() |
| 306 | 3-bounded Symmetric Functions over Rational Field with t=1 |
| 307 | sage: s = Sym.schur() |
| 308 | sage: s.realization_of() |
| 309 | Symmetric Functions over Rational Field |
| 310 | |
| 311 | Sage example in ./kschurnotes/notes-mike-anne.tex, line 2077:: |
| 312 | |
| 313 | sage: Sym = SymmetricFunctions(QQ) |
| 314 | sage: ks = Sym.kschur(3,t=1) |
| 315 | sage: h = Sym.homogeneous() |
| 316 | sage: for mu in Partitions(7, max_part =3): |
| 317 | ... print h(ks(mu)) |
| 318 | ... |
| 319 | h[3, 3, 1] |
| 320 | h[3, 2, 2] - h[3, 3, 1] |
| 321 | h[3, 2, 1, 1] - h[3, 2, 2] |
| 322 | h[3, 1, 1, 1, 1] - 2*h[3, 2, 1, 1] + h[3, 3, 1] |
| 323 | h[2, 2, 2, 1] - h[3, 2, 1, 1] - h[3, 2, 2] + h[3, 3, 1] |
| 324 | h[2, 2, 1, 1, 1] - 2*h[2, 2, 2, 1] - h[3, 1, 1, 1, 1] |
| 325 | + 2*h[3, 2, 1, 1] + h[3, 2, 2] - h[3, 3, 1] |
| 326 | h[2, 1, 1, 1, 1, 1] - 3*h[2, 2, 1, 1, 1] + 2*h[2, 2, 2, 1] |
| 327 | + h[3, 2, 1, 1] - h[3, 2, 2] |
| 328 | h[1, 1, 1, 1, 1, 1, 1] - 4*h[2, 1, 1, 1, 1, 1] + 4*h[2, 2, 1, 1, 1] |
| 329 | + 2*h[3, 1, 1, 1, 1] - 4*h[3, 2, 1, 1] + h[3, 3, 1] |
| 330 | |
| 331 | Sage example in ./kschurnotes/notes-mike-anne.tex, line 2153:: |
| 332 | |
| 333 | sage: mu = Partition([3,2,1]) |
| 334 | sage: c = mu.to_core(3) |
| 335 | sage: w = c.to_grassmannian() |
| 336 | sage: w.stanley_symmetric_function() |
| 337 | 4*m[1, 1, 1, 1, 1, 1] + 3*m[2, 1, 1, 1, 1] + 2*m[2, 2, 1, 1] |
| 338 | + m[2, 2, 2] + 2*m[3, 1, 1, 1] + m[3, 2, 1] |
| 339 | sage: w.reduced_words() |
| 340 | [[2, 0, 3, 2, 1, 0], [0, 2, 3, 2, 1, 0], [0, 3, 2, 3, 1, 0], |
| 341 | [0, 3, 2, 1, 3, 0]] |
| 342 | |
| 343 | Sage example in ./kschurnotes/notes-mike-anne.tex, line 2202:: |
| 344 | |
| 345 | sage: Sym = SymmetricFunctions(QQ) |
| 346 | sage: ks = Sym.kschur(3,t=1) |
| 347 | sage: h = Sym.homogeneous() |
| 348 | sage: c = Partition([3,2,1]).to_core(3) |
| 349 | sage: f = c.to_grassmannian().stanley_symmetric_function()*h([1]); f |
| 350 | 28*m[1, 1, 1, 1, 1, 1, 1] + 19*m[2, 1, 1, 1, 1, 1] + 12*m[2, 2, 1, 1, 1] |
| 351 | + 7*m[2, 2, 2, 1] + 11*m[3, 1, 1, 1, 1] + 6*m[3, 2, 1, 1] + 3*m[3, 2, 2] |
| 352 | + 2*m[3, 3, 1] + 2*m[4, 1, 1, 1] + m[4, 2, 1] |
| 353 | sage: for la in Partitions(7, max_part=3): |
| 354 | ... print la, f.scalar( ks(la) ) |
| 355 | [3, 3, 1] 2 |
| 356 | [3, 2, 2] 1 |
| 357 | [3, 2, 1, 1] 3 |
| 358 | [3, 1, 1, 1, 1] 1 |
| 359 | [2, 2, 2, 1] 0 |
| 360 | [2, 2, 1, 1, 1] 0 |
| 361 | [2, 1, 1, 1, 1, 1] 0 |
| 362 | [1, 1, 1, 1, 1, 1, 1] 0 |
| 363 | |
| 364 | Sage example in ./kschurnotes/notes-mike-anne.tex, line 2225:: |
| 365 | |
| 366 | sage: S = [la for la in Partitions(7, max_part=3) if f.scalar(ks(la))>0] |
| 367 | sage: for p in S: |
| 368 | ... print p, SkewPartition([p.to_core(3).to_partition(),c.to_partition()]) |
| 369 | ... |
| 370 | [3, 3, 1] [[7, 4, 1], [5, 2, 1]] |
| 371 | [3, 2, 2] [[5, 2, 2], [5, 2, 1]] |
| 372 | [3, 2, 1, 1] [[6, 3, 1, 1], [5, 2, 1]] |
| 373 | [3, 1, 1, 1, 1] [[5, 2, 1, 1, 1], [5, 2, 1]] |
| 374 | |
| 375 | Sage example in ./kschurnotes/notes-mike-anne.tex, line 2533:: |
| 376 | |
| 377 | sage: W = WeylGroup(['A',3,1]) |
| 378 | sage: [w.reduced_word() for w in W.pieri_factors()] |
| 379 | [[], [0], [1], [2], [3], [1, 0], [2, 0], [0, 3], [2, 1], [3, 1], [3, 2], |
| 380 | [2, 1, 0], [1, 0, 3], [0, 3, 2], [3, 2, 1]] |
| 381 | |
| 382 | Sage example in ./kschurnotes/notes-mike-anne.tex, line 2541:: |
| 383 | |
| 384 | sage: A = NilCoxeterAlgebra(WeylGroup(['A',3,1]), prefix = 'A') |
| 385 | sage: A.homogeneous_noncommutative_variables([2]) |
| 386 | A1*A0 + A2*A0 + A0*A3 + A3*A2 + A3*A1 + A2*A1 |
| 387 | |
| 388 | Sage example in ./kschurnotes/notes-mike-anne.tex, line 2548:: |
| 389 | |
| 390 | sage: A.k_schur_noncommutative_variables([2,2]) |
| 391 | A0*A3*A1*A0 + A3*A1*A2*A0 + A1*A2*A0*A1 + A3*A2*A0*A3 + A2*A0*A3*A1 |
| 392 | + A2*A3*A1*A2 |
| 393 | |
| 394 | Sage example in ./kschurnotes/notes-mike-anne.tex, line 2555:: |
| 395 | |
| 396 | sage: Sym = SymmetricFunctions(ZZ) |
| 397 | sage: ks = Sym.kschur(5,t=1) |
| 398 | sage: ks[2,1]*ks[2,1] |
| 399 | ks5[2, 2, 1, 1] + ks5[2, 2, 2] + ks5[3, 1, 1, 1] + 2*ks5[3, 2, 1] |
| 400 | + ks5[3, 3] + ks5[4, 2] |
| 401 | |
| 402 | Sage example in ./kschurnotes/notes-mike-anne.tex, line 2683:: |
| 403 | |
| 404 | sage: la = Partition([2,2]) |
| 405 | sage: la.k_conjugate(2).conjugate() |
| 406 | [4] |
| 407 | sage: la = Partition([2,1,1]) |
| 408 | sage: la.k_conjugate(2).conjugate() |
| 409 | [3, 1] |
| 410 | sage: la = Partition([1,1,1,1]) |
| 411 | sage: la.k_conjugate(2).conjugate() |
| 412 | [2, 2] |
| 413 | |
| 414 | Sage example in ./kschurnotes/notes-mike-anne.tex, line 2695:: |
| 415 | |
| 416 | sage: Sym = SymmetricFunctions(FractionField(QQ['t'])) |
| 417 | sage: ks = Sym.kschur(2) |
| 418 | sage: ks[2,2].omega_t_inverse() |
| 419 | 1/t^2*ks2[1, 1, 1, 1] |
| 420 | sage: ks[2,1,1].omega_t_inverse() |
| 421 | 1/t*ks2[2, 1, 1] |
| 422 | sage: ks[1,1,1,1].omega_t_inverse() |
| 423 | 1/t^2*ks2[2, 2] |
| 424 | |
| 425 | Sage example in ./kschurnotes/notes-mike-anne.tex, line 2706:: |
| 426 | |
| 427 | sage: Sym = SymmetricFunctions(FractionField(QQ['q,t'])) |
| 428 | sage: H = Sym.macdonald().H() |
| 429 | sage: ks = Sym.kschur(2) |
| 430 | sage: ks(H[2,2]) |
| 431 | q^2*ks2[1, 1, 1, 1] + (q*t+q)*ks2[2, 1, 1] + ks2[2, 2] |
| 432 | sage: ks(H[2,1,1]) |
| 433 | q*ks2[1, 1, 1, 1] + (q*t^2+1)*ks2[2, 1, 1] + t*ks2[2, 2] |
| 434 | sage: ks(H[1,1,1,1]) |
| 435 | ks2[1, 1, 1, 1] + (t^3+t^2)*ks2[2, 1, 1] + t^4*ks2[2, 2] |
| 436 | |
| 437 | Sage example in ./kschurnotes/notes-mike-anne.tex, line 2858:: |
| 438 | |
| 439 | sage: t = Tableau([[1,1,1,2,3,7],[2,2,3,5],[3,4],[4,5],[6]]) |
| 440 | sage: t.charge() |
| 441 | 9 |
| 442 | |
| 443 | Sage example in ./kschurnotes/notes-mike-anne.tex, line 3064:: |
| 444 | |
| 445 | sage: la = Partition([3,2,1,1]) |
| 446 | sage: la.k_atom(4) |
| 447 | [[[1, 1, 1], [2, 2], [3], [4]], [[1, 1, 1, 4], [2, 2], [3]]] |
| 448 | |
| 449 | Sage example in ./kschurnotes/notes-mike-anne.tex, line 3163:: |
| 450 | |
| 451 | sage: s = SymmetricFunctions(QQ['t']).schur() |
| 452 | sage: G1 = s[1] |
| 453 | sage: G211 = G1.hl_creation_operator([2,1]); G211 |
| 454 | s[2, 1, 1] + t*s[2, 2] + t*s[3, 1] |
| 455 | sage: G3211 = G211.hl_creation_operator([3]); G3211 |
| 456 | s[3, 2, 1, 1] + t*s[3, 2, 2] + t*s[3, 3, 1] + t*s[4, 1, 1, 1] |
| 457 | + (2*t^2+t)*s[4, 2, 1] + t^2*s[4, 3] + (t^3+t^2)*s[5, 1, 1] |
| 458 | + 2*t^3*s[5, 2] + t^4*s[6, 1] |
| 459 | |
| 460 | Sage example in ./kschurnotes/notes-mike-anne.tex, line 3529:: |
| 461 | |
| 462 | sage: Sym = SymmetricFunctions(FractionField(QQ['t'])) |
| 463 | sage: ks4 = Sym.kschur(4) |
| 464 | sage: ks4([3, 1, 1]).hl_creation_operator([1]) |
| 465 | (t-1)*ks4[2, 2, 1, 1] + t^2*ks4[3, 1, 1, 1] + t^3*ks4[3, 2, 1] |
| 466 | + (t^3-t^2)*ks4[3, 3] + t^4*ks4[4, 1, 1] |
| 467 | sage: ks4([3, 1, 1]).hl_creation_operator([2]) |
| 468 | t*ks4[3, 2, 1, 1] + t^2*ks4[3, 3, 1] + t^2*ks4[4, 1, 1, 1] |
| 469 | + t^3*ks4[4, 2, 1] |
| 470 | sage: ks4([3, 1, 1]).hl_creation_operator([3]) |
| 471 | ks4[3, 3, 1, 1] + t*ks4[4, 2, 1, 1] + t^2*ks4[4, 3, 1] |
| 472 | sage: ks4([3, 1, 1]).hl_creation_operator([4]) |
| 473 | ks4[4, 3, 1, 1] |
| 474 | |
| 475 | Sage example in ./kschurnotes/notes-mike-anne.tex, line 3596:: |
| 476 | |
| 477 | sage: Sym = SymmetricFunctions(FractionField(QQ['t'])) |
| 478 | sage: ks3 = Sym.kschur(3) |
| 479 | sage: ks3([3,2]).omega() |
| 480 | Traceback (most recent call last): |
| 481 | ... |
| 482 | ValueError: t^2*s[1, 1, 1, 1, 1] + t*s[2, 1, 1, 1] + s[2, 2, 1] is not |
| 483 | in the image of Generic morphism: |
| 484 | From: 3-bounded Symmetric Functions over Fraction Field of Univariate |
| 485 | Polynomial Ring in t over Rational Field in the 3-Schur basis |
| 486 | To: Symmetric Functions over Fraction Field of Univariate Polynomial Ring |
| 487 | in t over Rational Field in the Schur basis |
| 488 | |
| 489 | sage: s = Sym.schur() |
| 490 | sage: s(ks3[3,2]) |
| 491 | s[3, 2] + t*s[4, 1] + t^2*s[5] |
| 492 | sage: t = s.base_ring().gen() |
| 493 | sage: invert = lambda x: s.base_ring()(x.subs(t=1/t)) |
| 494 | sage: ks3(s(ks3([3,2])).omega().map_coefficients(invert)) |
| 495 | 1/t^2*ks3[1, 1, 1, 1, 1] |
| 496 | |
| 497 | Sage example in ./kschurnotes/notes-mike-anne.tex, line 3618:: |
| 498 | |
| 499 | sage: ks3[3,2].omega_t_inverse() |
| 500 | 1/t^2*ks3[1, 1, 1, 1, 1] |
| 501 | |
| 502 | Sage example in ./kschurnotes/notes-mike-anne.tex, line 3786:: |
| 503 | |
| 504 | sage: Sym = SymmetricFunctions(FractionField(QQ['t'])) |
| 505 | sage: ks3 = Sym.kschur(3) |
| 506 | sage: ks3[3,1].coproduct() |
| 507 | ks3[] # ks3[3, 1] + ks3[1] # ks3[2, 1] + (t+1)*ks3[1] # ks3[3] |
| 508 | + ks3[1, 1] # ks3[2] + ks3[2] # ks3[1, 1] + (t+1)*ks3[2] # ks3[2] |
| 509 | + ks3[2, 1] # ks3[1] + (t+1)*ks3[3] # ks3[1] + ks3[3, 1] # ks3[] |
| 510 | |
| 511 | Sage example in ./kschurnotes/notes-mike-anne.tex, line 3820:: |
| 512 | |
| 513 | sage: Sym = SymmetricFunctions(FractionField(QQ['t'])) |
| 514 | sage: ks2 = Sym.kschur(2) |
| 515 | sage: ks3 = Sym.kschur(3) |
| 516 | sage: ks5 = Sym.kschur(5) |
| 517 | sage: ks5(ks3[2])*ks5(ks2[1]) |
| 518 | ks5[2, 1] + ks5[3] |
| 519 | sage: ks5(ks3[2])*ks5(ks2[2,1]) |
| 520 | ks5[2, 2, 1] + ks5[3, 1, 1] + (t+1)*ks5[3, 2] + (t+1)*ks5[4, 1] |
| 521 | + t*ks5[5] |
| 522 | |
| 523 | Sage example in ./kschurnotes/notes-mike-anne.tex, line 3875:: |
| 524 | |
| 525 | sage: Sym = SymmetricFunctions(FractionField(QQ['t'])) |
| 526 | sage: ks3 = Sym.kschur(3) |
| 527 | sage: ks4 = Sym.kschur(4) |
| 528 | sage: ks5 = Sym.kschur(5) |
| 529 | sage: ks4(ks3[3,2,1,1]) |
| 530 | ks4[3, 2, 1, 1] + t*ks4[3, 3, 1] + t*ks4[4, 1, 1, 1] + t^2*ks4[4, 2, 1] |
| 531 | sage: ks5(ks3[3,2,1,1]) |
| 532 | ks5[3, 2, 1, 1] + t*ks5[3, 3, 1] + t*ks5[4, 1, 1, 1] + t^2*ks5[4, 2, 1] |
| 533 | + t^2*ks5[4, 3] + t^3*ks5[5, 1, 1] |
| 534 | |
| 535 | sage: ks5(ks4[3,2,1,1]) |
| 536 | ks5[3, 2, 1, 1] |
| 537 | sage: ks5(ks4[4,3,3,2,1,1]) |
| 538 | ks5[4, 3, 3, 2, 1, 1] + t*ks5[4, 4, 3, 1, 1, 1] |
| 539 | + t^2*ks5[5, 3, 3, 1, 1, 1] |
| 540 | sage: ks5(ks4[4,3,3,2,1,1,1]) |
| 541 | ks5[4, 3, 3, 2, 1, 1, 1] + t*ks5[4, 3, 3, 3, 1, 1] |
| 542 | + t*ks5[4, 4, 3, 1, 1, 1, 1] + t^2*ks5[4, 4, 3, 2, 1, 1] |
| 543 | + t^2*ks5[5, 3, 3, 1, 1, 1, 1] + t^3*ks5[5, 3, 3, 2, 1, 1] |
| 544 | + t^4*ks5[5, 4, 3, 1, 1, 1] |
| 545 | |
| 546 | Sage example in ./kschurnotes/notes-mike-anne.tex, line 3942:: |
| 547 | |
| 548 | sage: Sym = SymmetricFunctions(FractionField(QQ['q,t'])) |
| 549 | sage: H = Sym.macdonald().H() |
| 550 | sage: ks = Sym.kschur(3) |
| 551 | sage: ks(H[3]) |
| 552 | q^3*ks3[1, 1, 1] + (q^2+q)*ks3[2, 1] + ks3[3] |
| 553 | sage: ks(H[3,2]) |
| 554 | q^4*ks3[1, 1, 1, 1, 1] + (q^3*t+q^3+q^2)*ks3[2, 1, 1, 1] |
| 555 | + (q^3*t+q^2*t+q^2+q)*ks3[2, 2, 1] |
| 556 | + (q^2*t+q*t+q)*ks3[3, 1, 1] + ks3[3, 2] |
| 557 | sage: ks(H[3,1,1]) |
| 558 | q^3*ks3[1, 1, 1, 1, 1] + (q^3*t^2+q^2+q)*ks3[2, 1, 1, 1] |
| 559 | + (q^2*t^2+q^2*t+q*t+q)*ks3[2, 2, 1] |
| 560 | + (q^2*t^2+q*t^2+1)*ks3[3, 1, 1] + t*ks3[3, 2] |
| 561 | |
| 562 | Sage example in ./kschurnotes/notes-mike-anne.tex, line 4047:: |
| 563 | |
| 564 | sage: la = Partition([2,1]) |
| 565 | sage: w = la.to_core(3).to_grassmannian() |
| 566 | sage: f = w.stanley_symmetric_function(); f |
| 567 | 2*m[1, 1, 1] + m[2, 1] |
| 568 | |
| 569 | Sage example in ./kschurnotes/notes-mike-anne.tex, line 4055:: |
| 570 | |
| 571 | sage: Sym = SymmetricFunctions(QQ) |
| 572 | sage: p = Sym.power() |
| 573 | sage: ks3 = Sym.kschur(3,1) |
| 574 | sage: for mu in Partitions(5, max_part=3): |
| 575 | ... print mu, (f*p[2]).scalar( ks3(mu) ) |
| 576 | [3, 2] 1 |
| 577 | [3, 1, 1] 1 |
| 578 | [2, 2, 1] 0 |
| 579 | [2, 1, 1, 1] -1 |
| 580 | [1, 1, 1, 1, 1] -1 |
| 581 | |
| 582 | Sage example in ./kschurnotes/notes-mike-anne.tex, line 4153:: |
| 583 | |
| 584 | sage: R = QQ[I]; z4 = R.zeta(4) |
| 585 | sage: Sym = SymmetricFunctions(R) |
| 586 | sage: ks3z = Sym.kschur(3,t=z4) |
| 587 | sage: ks3 = Sym.kschur(3,t=1) |
| 588 | sage: p = Sym.p() |
| 589 | sage: p(ks3z[2, 2, 2, 2, 2, 2, 2, 2]) |
| 590 | 1/12*p[4, 4, 4, 4] + 1/4*p[8, 8] + (-1/3)*p[12, 4] |
| 591 | sage: p(ks3[2,2]) |
| 592 | 1/12*p[1, 1, 1, 1] + 1/4*p[2, 2] + (-1/3)*p[3, 1] |
| 593 | sage: p(ks3[2,2]).plethysm(p[4]) |
| 594 | 1/12*p[4, 4, 4, 4] + 1/4*p[8, 8] + (-1/3)*p[12, 4] |
| 595 | |
| 596 | Sage example in ./kschurnotes/notes-mike-anne.tex, line 4167:: |
| 597 | |
| 598 | sage: ks3z[3, 3, 3, 3]*ks3z[2, 1] |
| 599 | ks3[3, 3, 3, 3, 2, 1] |
| 600 | |
| 601 | Sage example in ./kschurnotes/notes-mike-anne.tex, line 4328:: |
| 602 | |
| 603 | sage: Sym = SymmetricFunctions(QQ['t'].fraction_field()) |
| 604 | sage: HLQp = Sym.hall_littlewood().Qp() |
| 605 | sage: HLP = Sym.hall_littlewood().P() |
| 606 | sage: def dual_k_schur(k, la): |
| 607 | ... ks = Sym.kschur(k) |
| 608 | ... return sum( ks(HLQp(mu)).coefficient(la)*HLP(mu) |
| 609 | ... for mu in Partitions(add(la), max_part=k) ) |
| 610 | sage: ks3 = Sym.kschur(3) |
| 611 | sage: f = dual_k_schur(3,[2,1,1])*dual_k_schur(3,[3,2,1]) |
| 612 | sage: for mu in Partitions(10,max_part=3): |
| 613 | ... print mu, f.scalar(ks3(mu)) |
| 614 | [3, 3, 3, 1] t^5 + 3*t^4 + 3*t^3 + 4*t^2 + 2*t + 1 |
| 615 | [3, 3, 2, 2] t^4 + t^3 + 3*t^2 + 2*t + 1 |
| 616 | [3, 3, 2, 1, 1] 2*t^5 + 3*t^4 + 5*t^3 + 6*t^2 + 4*t + 2 |
| 617 | [3, 3, 1, 1, 1, 1] t^5 + t^4 + 4*t^3 + 4*t^2 + 3*t + 1 |
| 618 | [3, 2, 2, 2, 1] t^4 + 3*t^3 + 4*t^2 + 3*t + 1 |
| 619 | [3, 2, 2, 1, 1, 1] 2*t^2 + t + 1 |
| 620 | [3, 2, 1, 1, 1, 1, 1] 2*t^5 + 3*t^4 + 4*t^3 + 3*t^2 + t |
| 621 | [3, 1, 1, 1, 1, 1, 1, 1] t^5 + 2*t^4 + t^3 |
| 622 | [2, 2, 2, 2, 2] t^5 + 2*t^4 + 2*t^3 + t^2 |
| 623 | [2, 2, 2, 2, 1, 1] t^3 + t^2 |
| 624 | [2, 2, 2, 1, 1, 1, 1] t^4 + t^3 + t^2 |
| 625 | [2, 2, 1, 1, 1, 1, 1, 1] 0 |
| 626 | [2, 1, 1, 1, 1, 1, 1, 1, 1] t^7 + t^6 |
| 627 | [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] 0 |
| 628 | |
| 629 | Sage example in ./kschurnotes/notes-mike-anne.tex, line 4433:: |
| 630 | |
| 631 | sage: ks2 = SymmetricFunctions(QQ['t']).kschur(2) |
| 632 | sage: HLQp = SymmetricFunctions(QQ['t']).hall_littlewood().Qp() |
| 633 | sage: ks2( (HLQp(ks2[1,1])*HLQp(ks2[1])).restrict_parts(2) ) |
| 634 | ks2[1, 1, 1] + (-t+1)*ks2[2, 1] |
| 635 | |
| 636 | """ |