Ticket #13023: trac_13023_adjust_toric_imports.patch

File trac_13023_adjust_toric_imports.patch, 59.2 KB (added by Andrey Novoseltsev, 11 years ago)

Automatic adjustment of imports

  • sage/geometry/cone.py

    # HG changeset patch
    # User Andrey Novoseltsev <novoselt@gmail.com>
    # Date 1338057349 25200
    # Node ID ef2d3eb2e87ede1ee87869f3cd4d9ccf274c37c2
    # Parent  8aacd8a8a736ab5b0a09ace233468f4c3846e5ce
    Adjust toric import to reflect moved files.
    
    This patch was generated via
    sed -i s/generic.toric_/toric./ `find sage -type f`
    sed -i s/generic.fano_toric_/toric.fano_/ `find sage -type f`
    
    diff --git a/sage/geometry/cone.py b/sage/geometry/cone.py
    a b  
    22Convex rational polyhedral cones
    33
    44This module was designed as a part of framework for toric varieties
    5 (:mod:`~sage.schemes.generic.toric_variety`,
    6 :mod:`~sage.schemes.generic.fano_toric_variety`). While the emphasis is on
     5(:mod:`~sage.schemes.toric.variety`,
     6:mod:`~sage.schemes.toric.fano_variety`). While the emphasis is on
    77strictly convex cones, non-strictly convex cones are supported as well. Work
    88with distinct lattices (in the sense of discrete subgroups spanning vector
    99spaces) is supported. The default lattice is :class:`ToricLattice
  • sage/geometry/fan.py

    diff --git a/sage/geometry/fan.py b/sage/geometry/fan.py
    a b  
    22Rational polyhedral fans
    33
    44This module was designed as a part of the framework for toric varieties
    5 (:mod:`~sage.schemes.generic.toric_variety`,
    6 :mod:`~sage.schemes.generic.fano_toric_variety`). While the emphasis is on
     5(:mod:`~sage.schemes.toric.variety`,
     6:mod:`~sage.schemes.toric.fano_variety`). While the emphasis is on
    77complete full-dimensional fans, arbitrary fans are supported. Work
    88with distinct lattices. The default lattice is :class:`ToricLattice
    99<sage.geometry.toric_lattice.ToricLatticeFactory>` `N` of the appropriate
  • sage/geometry/fan_morphism.py

    diff --git a/sage/geometry/fan_morphism.py b/sage/geometry/fan_morphism.py
    a b  
    22Morphisms between toric lattices compatible with fans
    33
    44This module is a part of the framework for toric varieties
    5 (:mod:`~sage.schemes.generic.toric_variety`,
    6 :mod:`~sage.schemes.generic.fano_toric_variety`). Its main purpose is to
     5(:mod:`~sage.schemes.toric.variety`,
     6:mod:`~sage.schemes.toric.fano_variety`). Its main purpose is to
    77provide support for working with lattice morphisms compatible with fans via
    88:class:`FanMorphism` class.
    99
  • sage/geometry/point_collection.pyx

    diff --git a/sage/geometry/point_collection.pyx b/sage/geometry/point_collection.pyx
    a b  
    22Point collections
    33
    44This module was designed as a part of framework for toric varieties
    5 (:mod:`~sage.schemes.generic.toric_variety`,
    6 :mod:`~sage.schemes.generic.fano_toric_variety`).
     5(:mod:`~sage.schemes.toric.variety`,
     6:mod:`~sage.schemes.toric.fano_variety`).
    77
    88AUTHORS:
    99
  • sage/geometry/toric_lattice.py

    diff --git a/sage/geometry/toric_lattice.py b/sage/geometry/toric_lattice.py
    a b  
    22Toric lattices
    33
    44This module was designed as a part of the framework for toric varieties
    5 (:mod:`~sage.schemes.generic.toric_variety`,
    6 :mod:`~sage.schemes.generic.fano_toric_variety`).
     5(:mod:`~sage.schemes.toric.variety`,
     6:mod:`~sage.schemes.toric.fano_variety`).
    77
    88All toric lattices are isomorphic to `\ZZ^n` for some `n`, but will prevent
    99you from doing "wrong" operations with objects from different lattices.
  • sage/geometry/toric_lattice_element.pyx

    diff --git a/sage/geometry/toric_lattice_element.pyx b/sage/geometry/toric_lattice_element.pyx
    a b  
    22Toric lattice elements
    33
    44This module was designed as a part of the framework for toric varieties
    5 (:mod:`~sage.schemes.generic.toric_variety`,
    6 :mod:`~sage.schemes.generic.fano_toric_variety`).
     5(:mod:`~sage.schemes.toric.variety`,
     6:mod:`~sage.schemes.toric.fano_variety`).
    77
    88AUTHORS:
    99
  • sage/geometry/toric_plotter.py

    diff --git a/sage/geometry/toric_plotter.py b/sage/geometry/toric_plotter.py
    a b  
    916916        (:meth:`~ToricPlotter.plot_lattice` will use box mode which is likely
    917917        to be unsuitable). While this method may not be suitable for general
    918918        fans, it is quite natural for fans of :class:`CPR-Fano toric varieties.
    919         <sage.schemes.generic.fano_toric_variety.CPRFanoToricVariety_field`
     919        <sage.schemes.toric.fano_variety.CPRFanoToricVariety_field`
    920920       
    921921    Round
    922922        The cut-off regions is a sphere centered at the origin.
  • sage/schemes/generic/algebraic_scheme.py

    diff --git a/sage/schemes/generic/algebraic_scheme.py b/sage/schemes/generic/algebraic_scheme.py
    a b  
    1111    <sage.schemes.generic.projective_space.ProjectiveSpace_ring>`), or
    1212
    1313  * Toric varieties (:class:`ToricVariety
    14     <sage.schemes.generic.toric_variety.ToricVariety_field>`).
     14    <sage.schemes.toric.variety.ToricVariety_field>`).
    1515   
    1616Note that while projective spaces are of course toric varieties themselves,
    1717they are implemented differently in Sage due to efficiency considerations.
     
    145145import ambient_space
    146146import affine_space
    147147import projective_space
    148 import toric_variety
    149148import morphism
    150149import scheme
    151150
     
    537536       
    538537            sage: P1.<x,y> = toric_varieties.P1()
    539538            sage: type(P1.Hom(P1))
    540             <class 'sage.schemes.generic.toric_homset.SchemeHomset_toric_variety_with_category'>
     539            <class 'sage.schemes.toric.homset.SchemeHomset_toric_variety_with_category'>
    541540            sage: X = P1.subscheme(x-y)
    542541            sage: type(X.Hom(X))
    543             <class 'sage.schemes.generic.toric_homset.SchemeHomset_toric_variety_with_category'>
     542            <class 'sage.schemes.toric.homset.SchemeHomset_toric_variety_with_category'>
    544543        """
    545544        return self.__A._homset(*args, **kwds)
    546545
     
    20182017        preferred method to construct such subschemes is to use
    20192018        :meth:`~ToricVariety_field.subscheme` method of :class:`toric
    20202019        varieties
    2021         <sage.schemes.generic.toric_variety.ToricVariety_field>`.
     2020        <sage.schemes.toric.variety.ToricVariety_field>`.
    20222021
    20232022    INPUT:
    20242023
     
    20912090        INPUT:
    20922091
    20932092        - same as for
    2094           :class:`~sage.schemes.generic.toric_morphism.SchemeMorphism_polynomial_toric_variety`.
     2093          :class:`~sage.schemes.toric.morphism.SchemeMorphism_polynomial_toric_variety`.
    20952094
    20962095        OUPUT:
    20972096
    2098         - :class:`~sage.schemes.generic.toric_morphism.SchemeMorphism_polynomial_toric_variety`.
     2097        - :class:`~sage.schemes.toric.morphism.SchemeMorphism_polynomial_toric_variety`.
    20992098
    21002099        TESTS::
    21012100
     
    21232122              Defn: Defined on coordinates by sending [z0 : z1 : z2 : z3] to
    21242123                    [z2 : z1 : z2 : z3]
    21252124        """
    2126         from sage.schemes.generic.toric_morphism import SchemeMorphism_polynomial_toric_variety
     2125        from sage.schemes.toric.morphism import SchemeMorphism_polynomial_toric_variety
    21272126        return SchemeMorphism_polynomial_toric_variety(*args, **kwds)
    21282127
    21292128    def fan(self):
     
    21562155        OUTPUT:
    21572156
    21582157        - subscheme of an affine :class:`toric variety
    2159           <sage.schemes.generic.toric_variety.ToricVariety_field>`
     2158          <sage.schemes.toric.variety.ToricVariety_field>`
    21602159          corresponding to the pull-back of ``self`` by the embedding
    21612160          morphism of the ``i``-th :meth:`affine patch of the ambient
    21622161          space
    2163           <sage.schemes.generic.toric_variety.ToricVariety_field.affine_patch>`
     2162          <sage.schemes.toric.variety.ToricVariety_field.affine_patch>`
    21642163          of ``self``.
    21652164
    21662165        The result is cached, so the ``i``-th patch is always the same object
  • sage/schemes/generic/homset.py

    diff --git a/sage/schemes/generic/homset.py b/sage/schemes/generic/homset.py
    a b  
    4949    SchemeMorphism_point_affine,
    5050    SchemeMorphism_point_projective_ring,
    5151    SchemeMorphism_point_projective_field )
    52 from sage.schemes.generic.toric_morphism import SchemeMorphism_point_toric_field
     52from sage.schemes.toric.morphism import SchemeMorphism_point_toric_field
    5353
    5454
    5555
  • sage/schemes/toric/chow_group.py

    diff --git a/sage/schemes/toric/chow_group.py b/sage/schemes/toric/chow_group.py
    a b  
    136136from sage.rings.all import ZZ, QQ, Infinity
    137137
    138138from sage.geometry.cone import is_Cone
    139 from sage.schemes.generic.toric_variety import is_ToricVariety
    140 from sage.schemes.generic.toric_divisor import is_ToricDivisor
     139from sage.schemes.toric.variety import is_ToricVariety
     140from sage.schemes.toric.divisor import is_ToricDivisor
    141141
    142142
    143143
     
    185185
    186186            sage: P2 = toric_varieties.P2()
    187187            sage: A = P2.Chow_group()
    188             sage: from sage.schemes.generic.toric_chow_group import ChowCycle
     188            sage: from sage.schemes.toric.chow_group import ChowCycle
    189189            sage: ChowCycle(A, (0,1,2,3,11,12,13), check=False)
    190190            ( 36 | 6 | 0 )
    191191        """
     
    362362        INPUT:
    363363
    364364        - ``divisor`` -- a :class:`ToricDivisor
    365           <sage.schemes.generic.toric_divisor.ToricDivisor_generic>`
     365          <sage.schemes.toric.divisor.ToricDivisor_generic>`
    366366          that can be moved away from the Chow cycle. For example, any
    367367          Cartier divisor. See also :meth:`ToricDivisor.move_away_from
    368           <sage.schemes.generic.toric_divisor.ToricDivisor_generic.move_away_from>`.
     368          <sage.schemes.toric.divisor.ToricDivisor_generic.move_away_from>`.
    369369
    370370        OUTPUT:
    371371
     
    460460        `d`-dimensional cone spanned by `d` rays. Take the product of
    461461        the corresponding `d` homogeneous coordinates. This monomial
    462462        represents a cohomology classes of the toric variety `X`, see
    463         :meth:`~sage.schemes.generic.toric_variety.ToricVariety_field.cohomology_ring`.
     463        :meth:`~sage.schemes.toric.variety.ToricVariety_field.cohomology_ring`.
    464464        Its cohomological degree is `2d`, which is the same degree as
    465465        the Poincare-dual of the (real) `\dim(X)-2d`-dimensional torus
    466466        orbit associated to the simplicial cone. By linearity, we can
     
    477477        group can differ. But they are still isomorphic as rings over
    478478        the rationals. Moreover, the normalization of integration
    479479        (:meth:`volume_class
    480         <sage.schemes.generic.toric_variety.ToricVariety_field.volume_class>`)
     480        <sage.schemes.toric.variety.ToricVariety_field.volume_class>`)
    481481        and :meth:`count_points` are chosen to agree.
    482482
    483483        OUTPUT:
    484484
    485485        The
    486         :class:`~sage.schemes.generic.toric_variety.CohomologyClass`
     486        :class:`~sage.schemes.toric.variety.CohomologyClass`
    487487        which is associated to the Chow cycle.
    488488
    489489        If the toric variety is not simplicial, that is, has worse
     
    559559
    560560        EXAMPLES::
    561561
    562             sage: from sage.schemes.generic.toric_chow_group import *
     562            sage: from sage.schemes.toric.chow_group import *
    563563            sage: P2 = toric_varieties.P2()
    564564            sage: ChowGroup(P2, ZZ, check=True) == ChowGroup(P2, ZZ, check=False)   # indirect doctest
    565565            True
     
    589589
    590590        EXAMPLES::
    591591
    592             sage: from sage.schemes.generic.toric_chow_group import *
     592            sage: from sage.schemes.toric.chow_group import *
    593593            sage: P2 = toric_varieties.P2()
    594594            sage: ChowGroup(P2)    # indirect doctest
    595595            Chow group of 2-d CPR-Fano toric variety covered by 3 affine patches
     
    610610    EXAMPLES::
    611611
    612612        sage: P2=toric_varieties.P2()
    613         sage: from sage.schemes.generic.toric_chow_group import ChowGroup_class
     613        sage: from sage.schemes.toric.chow_group import ChowGroup_class
    614614        sage: A = ChowGroup_class(P2,ZZ,True);  A
    615615        Chow group of 2-d CPR-Fano toric variety covered by 3 affine patches
    616616        sage: A.an_element()
     
    623623        r"""
    624624        EXAMPLES::
    625625
    626             sage: from sage.schemes.generic.toric_chow_group import *
     626            sage: from sage.schemes.toric.chow_group import *
    627627            sage: P2=toric_varieties.P2()
    628628            sage: A = ChowGroup_class(P2,ZZ,True); A
    629629            Chow group of 2-d CPR-Fano toric variety covered by 3 affine patches
     
    680680        OUTPUT:
    681681       
    682682        A :class:`ToricVariety
    683         <sage.schemes.generic.toric_variety.ToricVariety_field>`.
     683        <sage.schemes.toric.variety.ToricVariety_field>`.
    684684       
    685685        EXAMPLES::
    686686
     
    759759            sage: points = lambda k: matrix([[1,1,1],[1,-1,1],[-1,1,1]]).solve_left(points_mod(k)).rows()
    760760            sage: cones = [[0,1,2,3],[4,5,6,7],[0,1,7,6],[4,5,3,2],[0,2,5,7],[4,6,1,3]]
    761761            sage: X_Delta = lambda k: ToricVariety( Fan(cones=cones, rays=points(k)) )
    762             sage: from sage.schemes.generic.toric_chow_group import ChowGroup
     762            sage: from sage.schemes.toric.chow_group import ChowGroup
    763763            sage: A = ChowGroup( X_Delta(2) )
    764764            sage: rel = A._rational_equivalence_relations(A.cover()).basis()
    765765            sage: matrix(rel).submatrix(col=0, ncols=1).elementary_divisors()
     
    813813        EXAMPLES::
    814814       
    815815            sage: P2=toric_varieties.P2()
    816             sage: from sage.schemes.generic.toric_chow_group import ChowGroup
     816            sage: from sage.schemes.toric.chow_group import ChowGroup
    817817            sage: ChowGroup(P2,ZZ)._repr_()
    818818            'Chow group of 2-d CPR-Fano toric variety covered by 3 affine patches'
    819819            sage: ChowGroup(P2,QQ)._repr_()
     
    11041104    WARNING ..
    11051105
    11061106        Use
    1107         :meth:`~sage.schemes.generic.toric_chow_group.ChowGroup_class.degree`
     1107        :meth:`~sage.schemes.toric.chow_group.ChowGroup_class.degree`
    11081108        to construct :class:`ChowGroup_degree_class` instances.
    11091109
    11101110    EXAMPLES::
     
    11181118        sage: A.degree(2)
    11191119        Z
    11201120        sage: type(_)
    1121         <class 'sage.schemes.generic.toric_chow_group.ChowGroup_degree_class'>
     1121        <class 'sage.schemes.toric.chow_group.ChowGroup_degree_class'>
    11221122    """
    11231123   
    11241124    def __init__(self, A, d):
     
    11351135
    11361136            sage: P2 = toric_varieties.P2()
    11371137            sage: A = P2.Chow_group()
    1138             sage: from sage.schemes.generic.toric_chow_group import ChowGroup_degree_class
     1138            sage: from sage.schemes.toric.chow_group import ChowGroup_degree_class
    11391139            sage: A2 = ChowGroup_degree_class(A,2)
    11401140            sage: A2
    11411141            Z
     
    12941294   
    12951295        sage: P2=toric_varieties.P2()
    12961296        sage: A = P2.Chow_group()
    1297         sage: from sage.schemes.generic.toric_chow_group import is_ChowGroup
     1297        sage: from sage.schemes.toric.chow_group import is_ChowGroup
    12981298        sage: is_ChowGroup(A)
    12991299        True
    13001300        sage: is_ChowGroup('Victoria')
     
    13201320   
    13211321        sage: P2=toric_varieties.P2()
    13221322        sage: A = P2.Chow_group()
    1323         sage: from sage.schemes.generic.toric_chow_group import *
     1323        sage: from sage.schemes.toric.chow_group import *
    13241324        sage: is_ChowCycle(A)
    13251325        False
    13261326        sage: is_ChowCycle(A.an_element())
  • sage/schemes/toric/divisor.py

    diff --git a/sage/schemes/toric/divisor.py b/sage/schemes/toric/divisor.py
    a b  
    22Toric divisors and divisor classes
    33
    44Let `X` be a :class:`toric variety
    5 <sage.schemes.generic.toric_variety.ToricVariety_field>` corresponding to a
     5<sage.schemes.toric.variety.ToricVariety_field>` corresponding to a
    66:class:`rational polyhedral fan <sage.geometry.fan.RationalPolyhedralFan>`
    77`\Sigma`. A :class:`toric divisor <ToricDivisor_generic>` `D` is a T-Weil
    88divisor over a given coefficient ring (usually `\ZZ` or `\QQ`), i.e. a formal
     
    177177from sage.matrix.constructor import matrix
    178178from sage.schemes.generic.divisor import Divisor_generic
    179179from sage.schemes.generic.divisor_group import DivisorGroup_generic
    180 from sage.schemes.generic.toric_divisor_class import ToricRationalDivisorClass
    181 from sage.schemes.generic.toric_variety import CohomologyRing, is_ToricVariety
     180from sage.schemes.toric.divisor_class import ToricRationalDivisorClass
     181from sage.schemes.toric.variety import CohomologyRing, is_ToricVariety
    182182
    183183
    184184#********************************************************
     
    202202       
    203203        - ``toric_variety`` -- a
    204204          :class:`toric variety
    205           <sage.schemes.generic.toric_variety.ToricVariety_field>``;
     205          <sage.schemes.toric.variety.ToricVariety_field>``;
    206206       
    207207        - ``base_ring`` -- the coefficient ring of this divisor group,
    208208          usually `\ZZ` (default) or `\QQ`.
     
    217217        EXAMPLES::
    218218
    219219            sage: P2 = toric_varieties.P2()
    220             sage: from sage.schemes.generic.toric_divisor import ToricDivisorGroup
     220            sage: from sage.schemes.toric.divisor import ToricDivisorGroup
    221221            sage: ToricDivisorGroup(P2, base_ring=ZZ)
    222222            Group of toric ZZ-Weil divisors
    223223            on 2-d CPR-Fano toric variety covered by 3 affine patches
     
    413413
    414414    EXAMPLES::
    415415
    416         sage: from sage.schemes.generic.toric_divisor import is_ToricDivisor
     416        sage: from sage.schemes.toric.divisor import is_ToricDivisor
    417417        sage: is_ToricDivisor(1)
    418418        False
    419419        sage: P2 = toric_varieties.P2()
     
    433433    INPUT:
    434434
    435435    - ``toric_variety`` -- a :class:`toric variety
    436       <sage.schemes.generic.toric_variety.ToricVariety_field>`;
     436      <sage.schemes.toric.variety.ToricVariety_field>`;
    437437     
    438438    - ``arg`` -- one of the following description of the toric divisor to be
    439439      constructed:
     
    468468
    469469    OUTPUT:
    470470   
    471     - A :class:`sage.schemes.generic.toric_divisor.ToricDivisor_generic`
     471    - A :class:`sage.schemes.toric.divisor.ToricDivisor_generic`
    472472       
    473473    EXAMPLES::
    474474
    475         sage: from sage.schemes.generic.toric_divisor import ToricDivisor
     475        sage: from sage.schemes.toric.divisor import ToricDivisor
    476476        sage: dP6 = toric_varieties.dP6()
    477477        sage: ToricDivisor(dP6, [(1,dP6.gen(2)), (1,dP6.gen(1))])
    478478        V(u) + V(y)
     
    603603   
    604604        Do not construct :class:`ToricDivisor_generic` objects manually.
    605605        Instead, use either the function :func:`ToricDivisor` or the method
    606         :meth:`~sage.schemes.generic.toric_variety.ToricVariety_field.divisor`
     606        :meth:`~sage.schemes.toric.variety.ToricVariety_field.divisor`
    607607        of toric varieties.
    608608
    609609    EXAMPLES::
     
    626626        EXAMPLES::
    627627           
    628628            sage: dP6 = toric_varieties.dP6()
    629             sage: from sage.schemes.generic.toric_divisor import ToricDivisor_generic
     629            sage: from sage.schemes.toric.divisor import ToricDivisor_generic
    630630            sage: TDiv = dP6.toric_divisor_group()
    631631            sage: ToricDivisor_generic([], TDiv)
    632632            0
     
    10231023        OUTPUT:
    10241024       
    10251025        Returns the corresponding cohomology class as an instance of
    1026         :class:`~sage.schemes.generic.toric_variety.CohomologyClass`.
     1026        :class:`~sage.schemes.toric.variety.CohomologyClass`.
    10271027        The cohomology class is the first Chern class of the
    10281028        associated line bundle `\mathcal{O}(D)`.
    10291029
     
    10951095
    10961096        OUTPUT:
    10971097       
    1098         The :class:`~sage.schemes.generic.toric_chow_group.ChowCycle`
     1098        The :class:`~sage.schemes.toric.chow_group.ChowCycle`
    10991099        represented by the divisor.
    11001100
    11011101        EXAMPLES:
     
    14481448       
    14491449        For a fixed divisor ``D``, the sections are generated by
    14501450        monomials in :meth:`ToricVariety.coordinate_ring
    1451         <sage.schemes.generic.toric_variety.ToricVariety_field.coordinate_ring>`.
     1451        <sage.schemes.toric.variety.ToricVariety_field.coordinate_ring>`.
    14521452        Alternatively, the monomials can be described as `M`-lattice
    14531453        points in the polyhedron ``D.polyhedron()``. This method
    14541454        converts the points `m\in M` into homogeneous polynomials.
     
    18391839    .. WARNING::
    18401840
    18411841        Do not instantiate this class yourself. Use
    1842         :meth:`~sage.schemes.generic.toric_variety.ToricVariety_field.rational_class_group`
     1842        :meth:`~sage.schemes.toric.variety.ToricVariety_field.rational_class_group`
    18431843        method of :class:`toric varieties
    1844         <sage.schemes.generic.toric_variety.ToricVariety_field>` if you need
     1844        <sage.schemes.toric.variety.ToricVariety_field>` if you need
    18451845        the divisor class group. Or you can obtain it as the parent of any
    18461846        divisor class constructed, for example, via
    18471847        :meth:`ToricDivisor_generic.divisor_class`.
     
    18491849    INPUT:
    18501850   
    18511851    - ``toric_variety`` -- :class:`toric variety
    1852       <sage.schemes.generic.toric_variety.ToricVariety_field`.
     1852      <sage.schemes.toric.variety.ToricVariety_field`.
    18531853     
    18541854    OUTPUT:
    18551855   
     
    18791879        EXAMPLES::
    18801880
    18811881            sage: P2 = toric_varieties.P2()
    1882             sage: from sage.schemes.generic.toric_divisor import ToricRationalDivisorClassGroup
     1882            sage: from sage.schemes.toric.divisor import ToricRationalDivisorClassGroup
    18831883            sage: ToricRationalDivisorClassGroup(P2)
    18841884            The toric rational divisor class group of a 2-d CPR-Fano
    18851885            toric variety covered by 3 affine patches
     
    19281928        EXAMPLES::
    19291929
    19301930            sage: P2 = toric_varieties.P2()
    1931             sage: from sage.schemes.generic.toric_divisor import ToricRationalDivisorClassGroup
     1931            sage: from sage.schemes.toric.divisor import ToricRationalDivisorClassGroup
    19321932            sage: ToricRationalDivisorClassGroup(P2)._repr_()
    19331933            'The toric rational divisor class group of a 2-d CPR-Fano toric variety covered by 3 affine patches'
    19341934        """
     
    19451945        EXAMPLES::
    19461946
    19471947            sage: P2 = toric_varieties.P2()
    1948             sage: from sage.schemes.generic.toric_divisor import ToricRationalDivisorClassGroup
     1948            sage: from sage.schemes.toric.divisor import ToricRationalDivisorClassGroup
    19491949            sage: ToricRationalDivisorClassGroup(P2)._latex_()
    19501950            '\\mathop{Cl}_{\\QQ}\\left(\\mathbb{P}_{\\Delta^{2}}\\right)'
    19511951        """
  • sage/schemes/toric/divisor_class.pyx

    diff --git a/sage/schemes/toric/divisor_class.pyx b/sage/schemes/toric/divisor_class.pyx
    a b  
    22Toric rational divisor classes
    33
    44This module is a part of the framework for :mod:`toric varieties
    5 <sage.schemes.generic.toric_variety>`.
     5<sage.schemes.toric.variety>`.
    66
    77AUTHORS:
    88
     
    8282
    8383    EXAMPLES::
    8484
    85         sage: from sage.schemes.generic.toric_divisor_class import (
     85        sage: from sage.schemes.toric.divisor_class import (
    8686        ...     is_ToricRationalDivisorClass)
    8787        sage: is_ToricRationalDivisorClass(1)
    8888        False
     
    325325        Divisor class [1, -2, 3, -4]
    326326        sage: loads(dumps(D))   # indirect test
    327327        Divisor class [1, -2, 3, -4]
    328         sage: from sage.schemes.generic.toric_divisor_class import (
     328        sage: from sage.schemes.toric.divisor_class import (
    329329        ...       _ToricRationalDivisorClass_unpickle_v1)
    330330        sage: _ToricRationalDivisorClass_unpickle_v1(
    331331        ...      Cl, [1, -2, 3, -4], 4, True)
  • sage/schemes/toric/fano_variety.py

    diff --git a/sage/schemes/toric/fano_variety.py b/sage/schemes/toric/fano_variety.py
    a b  
    159159                            is_FractionField, is_Field,
    160160                            is_MPolynomialRing, is_PolynomialRing)
    161161from sage.schemes.generic.algebraic_scheme import AlgebraicScheme_subscheme_toric
    162 from sage.schemes.generic.toric_variety import (
     162from sage.schemes.toric.variety import (
    163163                                            ToricVariety_field,
    164164                                            normalize_names)
    165165from sage.symbolic.all import SR
     
    192192
    193193    EXAMPLES::
    194194
    195         sage: from sage.schemes.generic.fano_toric_variety import (
     195        sage: from sage.schemes.toric.fano_variety import (
    196196        ...     is_CPRFanoToricVariety)
    197197        sage: is_CPRFanoToricVariety(1)
    198198        False
     
    223223    .. NOTE::
    224224
    225225        See documentation of the module
    226         :mod:`~sage.schemes.generic.fano_toric_variety` for the used
     226        :mod:`~sage.schemes.toric.fano_variety` for the used
    227227        definitions and supported varieties.
    228228
    229229    Due to the large number of available options, it is recommended to always
     
    265265      be subdivided to include all of the requested ``coordinate_points``;
    266266
    267267    - ``coordinate_names`` -- names of variables for the coordinate ring, see
    268       :func:`~sage.schemes.generic.toric_variety.normalize_names`
     268      :func:`~sage.schemes.toric.variety.normalize_names`
    269269      for acceptable formats. If not given, indexed variable names will be
    270270      created automatically;
    271271
     
    621621    .. NOTE::
    622622
    623623        See documentation of the module
    624         :mod:`~sage.schemes.generic.fano_toric_variety` for the used
     624        :mod:`~sage.schemes.toric.fano_variety` for the used
    625625        definitions and supported varieties.
    626626
    627627    INPUT:
     
    639639
    640640    - ``coordinate_names`` -- names of the variables of the coordinate ring in
    641641      the format accepted by
    642       :func:`~sage.schemes.generic.toric_variety.normalize_names`;
     642      :func:`~sage.schemes.toric.variety.normalize_names`;
    643643
    644644    - ``coordinate_name_indices`` -- indices for indexed variables,
    645645      if ``None``, will be equal to ``coordinate_points``;
     
    747747            hypersurfaces;
    748748
    749749        - ``coefficient_names`` -- names for the monomial coefficients, see
    750           :func:`~sage.schemes.generic.toric_variety.normalize_names`
     750          :func:`~sage.schemes.toric.variety.normalize_names`
    751751          for acceptable formats. If not given, indexed coefficient names will
    752752          be created automatically;
    753753
     
    10681068
    10691069        - ``coefficient_names`` -- the `i`-th element of this list specifies
    10701070          names for the monomial coefficients of the `i`-th polynomial, see
    1071           :func:`~sage.schemes.generic.toric_variety.normalize_names`
     1071          :func:`~sage.schemes.toric.variety.normalize_names`
    10721072          for acceptable formats. If not given, indexed coefficient names will
    10731073          be created automatically;
    10741074         
     
    11591159       
    11601160        - ``other`` -- a (possibly
    11611161          :class:`CPR-Fano <CPRFanoToricVariety_field>`) :class:`toric variety
    1162           <sage.schemes.generic.toric_variety.ToricVariety_field>`;
     1162          <sage.schemes.toric.variety.ToricVariety_field>`;
    11631163
    11641164        - ``coordinate_names`` -- names of variables for the coordinate ring,
    11651165          see :func:`normalize_names` for acceptable formats. If not given,
     
    11721172        OUTPUT:
    11731173
    11741174        - a :class:`toric variety
    1175           <sage.schemes.generic.toric_variety.ToricVariety_field>`, which is
     1175          <sage.schemes.toric.variety.ToricVariety_field>`, which is
    11761176          :class:`CPR-Fano <CPRFanoToricVariety_field>` if ``other`` was.   
    11771177
    11781178        EXAMPLES::
     
    12191219          subdividing fan;
    12201220
    12211221        - all other arguments will be passed to
    1222           :meth:`~sage.schemes.generic.toric_variety.ToricVariety_field.resolve`
     1222          :meth:`~sage.schemes.toric.variety.ToricVariety_field.resolve`
    12231223          method of (general) toric varieties, see its documentation for
    12241224          details.
    12251225
     
    12271227
    12281228        - :class:`CPR-Fano toric variety <CPRFanoToricVariety_field>` if there
    12291229          was no ``new_rays`` argument and :class:`toric variety
    1230           <sage.schemes.generic.toric_variety.ToricVariety_field>` otherwise.
     1230          <sage.schemes.toric.variety.ToricVariety_field>` otherwise.
    12311231
    12321232        EXAMPLES::
    12331233
     
    13271327
    13281328        sage: P1xP1 = CPRFanoToricVariety(
    13291329        ...       Delta_polar=lattice_polytope.octahedron(2))
    1330         sage: import sage.schemes.generic.fano_toric_variety as ftv
     1330        sage: import sage.schemes.toric.fano_variety as ftv
    13311331        sage: ftv.AnticanonicalHypersurface(P1xP1)
    13321332        Closed subscheme of 2-d CPR-Fano toric variety
    13331333        covered by 4 affine patches defined by:
     
    13471347
    13481348            sage: P1xP1 = CPRFanoToricVariety(
    13491349            ...       Delta_polar=lattice_polytope.octahedron(2))
    1350             sage: import sage.schemes.generic.fano_toric_variety as ftv
     1350            sage: import sage.schemes.toric.fano_variety as ftv
    13511351            sage: ftv.AnticanonicalHypersurface(P1xP1)
    13521352            Closed subscheme of 2-d CPR-Fano toric variety
    13531353            covered by 4 affine patches defined by:
     
    14541454            sage: np
    14551455            Nef-partition {0, 1, 3} U {2, 4, 5}
    14561456            sage: X = CPRFanoToricVariety(Delta_polar=o)
    1457             sage: from sage.schemes.generic.fano_toric_variety import *
     1457            sage: from sage.schemes.toric.fano_variety import *
    14581458            sage: NefCompleteIntersection(X, np)
    14591459            Closed subscheme of 3-d CPR-Fano toric variety
    14601460            covered by 8 affine patches defined by:
     
    15791579   
    15801580    We start with the rational field and slowly add more variables::
    15811581   
    1582         sage: from sage.schemes.generic.fano_toric_variety import *       
     1582        sage: from sage.schemes.toric.fano_variety import *       
    15831583        sage: F = add_variables(QQ, []); F      # No extension
    15841584        Rational Field
    15851585        sage: F = add_variables(QQ, ["a"]); F
  • sage/schemes/toric/homset.py

    diff --git a/sage/schemes/toric/homset.py b/sage/schemes/toric/homset.py
    a b  
    5757    Defining s, t, x, y
    5858    sage: S = P1xP1.subscheme([s*x-t*y])
    5959    sage: type(S.Hom(S))
    60     <class 'sage.schemes.generic.toric_homset.SchemeHomset_toric_variety_with_category'>
     60    <class 'sage.schemes.toric.homset.SchemeHomset_toric_variety_with_category'>
    6161"""
    6262
    6363
     
    9494          From: 2-d CPR-Fano toric variety covered by 4 affine patches
    9595          To:   1-d CPR-Fano toric variety covered by 2 affine patches
    9696        sage: type(hom_set)
    97         <class 'sage.schemes.generic.toric_homset.SchemeHomset_toric_variety_with_category'>
     97        <class 'sage.schemes.toric.homset.SchemeHomset_toric_variety_with_category'>
    9898
    9999        sage: hom_set(matrix([[1],[0]]))
    100100        Scheme morphism:
     
    210210              Defn: Defined on coordinates by sending [t : x0 : x1 : x2] to
    211211                    [x0 : x1 : x2]
    212212        """
    213         from sage.schemes.generic.toric_morphism import SchemeMorphism_polynomial_toric_variety
     213        from sage.schemes.toric.morphism import SchemeMorphism_polynomial_toric_variety
    214214        if isinstance(x, (list, tuple)):
    215215            return SchemeMorphism_polynomial_toric_variety(self, x, check=check)
    216216       
     
    219219            assert x.codomain() is self.domain().coordinate_ring()
    220220            return SchemeMorphism_polynomial_toric_variety(self, x.im_gens(), check=check)
    221221
    222         from sage.schemes.generic.toric_morphism import SchemeMorphism_fan_toric_variety
     222        from sage.schemes.toric.morphism import SchemeMorphism_fan_toric_variety
    223223        if isinstance(x, FanMorphism):
    224224            return SchemeMorphism_fan_toric_variety(self, x, check=check)
    225225
  • sage/schemes/toric/ideal.py

    diff --git a/sage/schemes/toric/ideal.py b/sage/schemes/toric/ideal.py
    a b  
    226226        Create an ideal and a multivariate polynomial ring containing it.
    227227       
    228228        See the :mod:`module documentation
    229         <sage.schemes.generic.toric_ideal>` for an introduction to
     229        <sage.schemes.toric.ideal>` for an introduction to
    230230        toric ideals.
    231231
    232232        INPUT:
  • sage/schemes/toric/library.py

    diff --git a/sage/schemes/toric/library.py b/sage/schemes/toric/library.py
    a b  
    1717
    1818You can assign the homogeneous coordinates to Sage variables either
    1919with
    20 :meth:`~sage.schemes.generic.toric_variety.ToricVariety_field.inject_variables`
     20:meth:`~sage.schemes.toric.variety.ToricVariety_field.inject_variables`
    2121or immediately during assignment like this::
    2222
    2323    sage: P2.<x,y,z> = toric_varieties.P2()
     
    4242from sage.geometry.fan import Fan
    4343from sage.geometry.lattice_polytope import LatticePolytope
    4444from sage.rings.all import ZZ
    45 from sage.schemes.generic.toric_variety import ToricVariety
    46 from sage.schemes.generic.fano_toric_variety import CPRFanoToricVariety
     45from sage.schemes.toric.variety import ToricVariety
     46from sage.schemes.toric.fano_variety import CPRFanoToricVariety
    4747
    4848
    4949
     
    200200        OUTPUT:
    201201
    202202        A :class:`toric variety
    203         <sage.schemes.generic.toric_variety.ToricVariety_field>`.
     203        <sage.schemes.toric.variety.ToricVariety_field>`.
    204204
    205205        EXAMPLES::
    206206         
     
    238238        OUTPUT:
    239239
    240240        A :class:`CPR-Fano toric variety
    241         <sage.schemes.generic.fano_toric_variety.CPRFanoToricVariety_field>`.
     241        <sage.schemes.toric.fano_variety.CPRFanoToricVariety_field>`.
    242242
    243243        EXAMPLES::
    244244         
     
    275275       
    276276        - ``names`` -- string. Names for the homogeneous
    277277          coordinates. See
    278           :func:`~sage.schemes.generic.toric_variety.normalize_names`
     278          :func:`~sage.schemes.toric.variety.normalize_names`
    279279          for acceptable formats.
    280280
    281281        OUTPUT:
    282282
    283283        A :class:`CPR-Fano toric variety
    284         <sage.schemes.generic.fano_toric_variety.CPRFanoToricVariety_field>`.
     284        <sage.schemes.toric.fano_variety.CPRFanoToricVariety_field>`.
    285285
    286286        EXAMPLES::
    287287
     
    305305       
    306306        - ``names`` -- string. Names for the homogeneous
    307307          coordinates. See
    308           :func:`~sage.schemes.generic.toric_variety.normalize_names`
     308          :func:`~sage.schemes.toric.variety.normalize_names`
    309309          for acceptable formats.
    310310
    311311        OUTPUT:
    312312
    313313        A :class:`CPR-Fano toric variety
    314         <sage.schemes.generic.fano_toric_variety.CPRFanoToricVariety_field>`.
     314        <sage.schemes.toric.fano_variety.CPRFanoToricVariety_field>`.
    315315
    316316        EXAMPLES::
    317317
     
    335335       
    336336        - ``names`` -- string. Names for the homogeneous
    337337          coordinates. See
    338           :func:`~sage.schemes.generic.toric_variety.normalize_names`
     338          :func:`~sage.schemes.toric.variety.normalize_names`
    339339          for acceptable formats.
    340340
    341341        OUTPUT:
    342342
    343343        A :class:`CPR-Fano toric variety
    344         <sage.schemes.generic.fano_toric_variety.CPRFanoToricVariety_field>`.
     344        <sage.schemes.toric.fano_variety.CPRFanoToricVariety_field>`.
    345345
    346346        EXAMPLES::
    347347
     
    365365       
    366366        - ``names`` -- string. Names for the homogeneous
    367367          coordinates. See
    368           :func:`~sage.schemes.generic.toric_variety.normalize_names`
     368          :func:`~sage.schemes.toric.variety.normalize_names`
    369369          for acceptable formats.
    370370
    371371        OUTPUT:
    372372
    373373        A :class:`CPR-Fano toric variety
    374         <sage.schemes.generic.fano_toric_variety.CPRFanoToricVariety_field>`.
     374        <sage.schemes.toric.fano_variety.CPRFanoToricVariety_field>`.
    375375
    376376        EXAMPLES::
    377377
     
    395395       
    396396        - ``names`` -- string. Names for the homogeneous
    397397          coordinates. See
    398           :func:`~sage.schemes.generic.toric_variety.normalize_names`
     398          :func:`~sage.schemes.toric.variety.normalize_names`
    399399          for acceptable formats.
    400400
    401401        OUTPUT:
    402402
    403403        A :class:`CPR-Fano toric variety
    404         <sage.schemes.generic.fano_toric_variety.CPRFanoToricVariety_field>`.
     404        <sage.schemes.toric.fano_variety.CPRFanoToricVariety_field>`.
    405405
    406406        EXAMPLES::
    407407
     
    427427       
    428428        - ``names`` -- string. Names for the homogeneous
    429429          coordinates. See
    430           :func:`~sage.schemes.generic.toric_variety.normalize_names`
     430          :func:`~sage.schemes.toric.variety.normalize_names`
    431431          for acceptable formats.
    432432
    433433        OUTPUT:
    434434
    435435        A :class:`CPR-Fano toric variety
    436         <sage.schemes.generic.fano_toric_variety.CPRFanoToricVariety_field>`.
     436        <sage.schemes.toric.fano_variety.CPRFanoToricVariety_field>`.
    437437
    438438        EXAMPLES::
    439439
     
    456456       
    457457        - ``names`` -- string. Names for the homogeneous
    458458          coordinates. See
    459           :func:`~sage.schemes.generic.toric_variety.normalize_names`
     459          :func:`~sage.schemes.toric.variety.normalize_names`
    460460          for acceptable formats.
    461461
    462462        OUTPUT:
    463463
    464464        A :class:`CPR-Fano toric variety
    465         <sage.schemes.generic.fano_toric_variety.CPRFanoToricVariety_field>`.
     465        <sage.schemes.toric.fano_variety.CPRFanoToricVariety_field>`.
    466466
    467467        EXAMPLES::
    468468
     
    487487
    488488        - ``names`` -- string. Names for the homogeneous
    489489          coordinates. See
    490           :func:`~sage.schemes.generic.toric_variety.normalize_names`
     490          :func:`~sage.schemes.toric.variety.normalize_names`
    491491          for acceptable formats.
    492492
    493493        OUTPUT:
    494494
    495495        A :class:`CPR-Fano toric variety
    496         <sage.schemes.generic.fano_toric_variety.CPRFanoToricVariety_field>`.
     496        <sage.schemes.toric.fano_variety.CPRFanoToricVariety_field>`.
    497497
    498498        EXAMPLES::
    499499       
     
    531531       
    532532        - ``names`` -- string. Names for the homogeneous
    533533          coordinates. See
    534           :func:`~sage.schemes.generic.toric_variety.normalize_names`
     534          :func:`~sage.schemes.toric.variety.normalize_names`
    535535          for acceptable formats.
    536536
    537537        OUTPUT:
    538538
    539539        A :class:`toric variety
    540         <sage.schemes.generic.toric_variety.ToricVariety_field>`.
     540        <sage.schemes.toric.variety.ToricVariety_field>`.
    541541
    542542        EXAMPLES::
    543543
     
    559559       
    560560        - ``names`` -- string. Names for the homogeneous
    561561          coordinates. See
    562           :func:`~sage.schemes.generic.toric_variety.normalize_names`
     562          :func:`~sage.schemes.toric.variety.normalize_names`
    563563          for acceptable formats.
    564564
    565565        OUTPUT:
    566566
    567567        A :class:`toric variety
    568         <sage.schemes.generic.toric_variety.ToricVariety_field>`.
     568        <sage.schemes.toric.variety.ToricVariety_field>`.
    569569
    570570        EXAMPLES::
    571571
     
    590590       
    591591        - ``names`` -- string. Names for the homogeneous
    592592          coordinates. See
    593           :func:`~sage.schemes.generic.toric_variety.normalize_names`
     593          :func:`~sage.schemes.toric.variety.normalize_names`
    594594          for acceptable formats.
    595595
    596596        OUTPUT:
    597597
    598598        A :class:`toric variety
    599         <sage.schemes.generic.toric_variety.ToricVariety_field>`.
     599        <sage.schemes.toric.variety.ToricVariety_field>`.
    600600
    601601        EXAMPLES::
    602602       
     
    634634       
    635635        - ``names`` -- string. Names for the homogeneous
    636636          coordinates. See
    637           :func:`~sage.schemes.generic.toric_variety.normalize_names`
     637          :func:`~sage.schemes.toric.variety.normalize_names`
    638638          for acceptable formats.
    639639
    640640        OUTPUT:
    641641
    642642        A :class:`toric variety
    643         <sage.schemes.generic.toric_variety.ToricVariety_field>`.
     643        <sage.schemes.toric.variety.ToricVariety_field>`.
    644644       
    645645        EXAMPLES::
    646646
     
    664664       
    665665        - ``names`` -- string. Names for the homogeneous
    666666          coordinates. See
    667           :func:`~sage.schemes.generic.toric_variety.normalize_names`
     667          :func:`~sage.schemes.toric.variety.normalize_names`
    668668          for acceptable formats.
    669669
    670670        OUTPUT:
    671671
    672672        A :class:`toric variety
    673         <sage.schemes.generic.toric_variety.ToricVariety_field>`.
     673        <sage.schemes.toric.variety.ToricVariety_field>`.
    674674       
    675675        EXAMPLES::
    676676
     
    693693       
    694694        - ``names`` -- string. Names for the homogeneous
    695695          coordinates. See
    696           :func:`~sage.schemes.generic.toric_variety.normalize_names`
     696          :func:`~sage.schemes.toric.variety.normalize_names`
    697697          for acceptable formats.
    698698
    699699        OUTPUT:
    700700
    701701        A :class:`toric variety
    702         <sage.schemes.generic.toric_variety.ToricVariety_field>`.       
     702        <sage.schemes.toric.variety.ToricVariety_field>`.       
    703703
    704704        EXAMPLES::
    705705
     
    724724       
    725725        - ``names`` -- string. Names for the homogeneous
    726726          coordinates. See
    727           :func:`~sage.schemes.generic.toric_variety.normalize_names`
     727          :func:`~sage.schemes.toric.variety.normalize_names`
    728728          for acceptable formats.
    729729
    730730        OUTPUT:
    731731
    732732        A :class:`CPR-Fano toric variety
    733         <sage.schemes.generic.fano_toric_variety.CPRFanoToricVariety_field>`.
     733        <sage.schemes.toric.fano_variety.CPRFanoToricVariety_field>`.
    734734
    735735        EXAMPLES::
    736736
     
    759759       
    760760        - ``names`` -- string. Names for the homogeneous
    761761          coordinates. See
    762           :func:`~sage.schemes.generic.toric_variety.normalize_names`
     762          :func:`~sage.schemes.toric.variety.normalize_names`
    763763          for acceptable formats.
    764764
    765765        OUTPUT:
    766766
    767767        A :class:`CPR-Fano toric variety
    768         <sage.schemes.generic.fano_toric_variety.CPRFanoToricVariety_field>`.
     768        <sage.schemes.toric.fano_variety.CPRFanoToricVariety_field>`.
    769769
    770770        EXAMPLES::
    771771
     
    794794       
    795795        - ``names`` -- string. Names for the homogeneous
    796796          coordinates. See
    797           :func:`~sage.schemes.generic.toric_variety.normalize_names`
     797          :func:`~sage.schemes.toric.variety.normalize_names`
    798798          for acceptable formats.
    799799
    800800        OUTPUT:
    801801
    802802        A :class:`CPR-Fano toric variety
    803         <sage.schemes.generic.fano_toric_variety.CPRFanoToricVariety_field>`.
     803        <sage.schemes.toric.fano_variety.CPRFanoToricVariety_field>`.
    804804
    805805        EXAMPLES::
    806806
     
    836836       
    837837        - ``names`` -- string. Names for the homogeneous
    838838          coordinates. See
    839           :func:`~sage.schemes.generic.toric_variety.normalize_names`
     839          :func:`~sage.schemes.toric.variety.normalize_names`
    840840          for acceptable formats.
    841841
    842842        OUTPUT:
    843843
    844844        A :class:`toric variety
    845         <sage.schemes.generic.toric_variety.ToricVariety_field>`.
     845        <sage.schemes.toric.variety.ToricVariety_field>`.
    846846       
    847847        NOTES:
    848848
     
    881881       
    882882        - ``names`` -- string. Names for the homogeneous
    883883          coordinates. See
    884           :func:`~sage.schemes.generic.toric_variety.normalize_names`
     884          :func:`~sage.schemes.toric.variety.normalize_names`
    885885          for acceptable formats.
    886886
    887887        OUTPUT:
    888888
    889889        A :class:`toric variety
    890         <sage.schemes.generic.toric_variety.ToricVariety_field>`
     890        <sage.schemes.toric.variety.ToricVariety_field>`
    891891        `X_k`. Its Chow group is `A_1(X_k)=\ZZ_k`.
    892892
    893893        EXAMPLES::
     
    933933       
    934934        - ``names`` -- string. Names for the homogeneous
    935935          coordinates. See
    936           :func:`~sage.schemes.generic.toric_variety.normalize_names`
     936          :func:`~sage.schemes.toric.variety.normalize_names`
    937937          for acceptable formats.
    938938
    939939        OUTPUT:
    940940
    941941        A :class:`CPR-Fano toric variety
    942         <sage.schemes.generic.fano_toric_variety.CPRFanoToricVariety_field>`.
     942        <sage.schemes.toric.fano_variety.CPRFanoToricVariety_field>`.
    943943
    944944        EXAMPLES::
    945945         
     
    979979       
    980980        - ``names`` -- string. Names for the homogeneous
    981981          coordinates. See
    982           :func:`~sage.schemes.generic.toric_variety.normalize_names`
     982          :func:`~sage.schemes.toric.variety.normalize_names`
    983983          for acceptable formats.
    984984
    985985        OUTPUT:
    986986
    987987        A :class:`toric variety
    988         <sage.schemes.generic.toric_variety.ToricVariety_field>`.
     988        <sage.schemes.toric.variety.ToricVariety_field>`.
    989989       
    990990        EXAMPLES::
    991991         
     
    10101010       
    10111011        - ``names`` -- string. Names for the homogeneous
    10121012          coordinates. See
    1013           :func:`~sage.schemes.generic.toric_variety.normalize_names`
     1013          :func:`~sage.schemes.toric.variety.normalize_names`
    10141014          for acceptable formats.
    10151015
    10161016        OUTPUT:
    10171017
    10181018        A :class:`CPR-Fano toric variety
    1019         <sage.schemes.generic.fano_toric_variety.CPRFanoToricVariety_field>`.
     1019        <sage.schemes.toric.fano_variety.CPRFanoToricVariety_field>`.
    10201020
    10211021        EXAMPLES::
    10221022       
     
    10401040       
    10411041        - ``names`` -- string. Names for the homogeneous
    10421042          coordinates. See
    1043           :func:`~sage.schemes.generic.toric_variety.normalize_names`
     1043          :func:`~sage.schemes.toric.variety.normalize_names`
    10441044          for acceptable formats.
    10451045
    10461046        OUTPUT:
    10471047
    10481048        A :class:`CPR-Fano toric variety
    1049         <sage.schemes.generic.fano_toric_variety.CPRFanoToricVariety_field>`.
     1049        <sage.schemes.toric.fano_variety.CPRFanoToricVariety_field>`.
    10501050
    10511051        EXAMPLES::
    10521052       
     
    10701070       
    10711071        - ``names`` -- string. Names for the homogeneous
    10721072          coordinates. See
    1073           :func:`~sage.schemes.generic.toric_variety.normalize_names`
     1073          :func:`~sage.schemes.toric.variety.normalize_names`
    10741074          for acceptable formats.
    10751075
    10761076        OUTPUT:
    10771077
    10781078        A :class:`CPR-Fano toric variety
    1079         <sage.schemes.generic.fano_toric_variety.CPRFanoToricVariety_field>`.
     1079        <sage.schemes.toric.fano_variety.CPRFanoToricVariety_field>`.
    10801080
    10811081        EXAMPLES::
    10821082       
     
    11031103       
    11041104        - ``names`` -- string. Names for the homogeneous
    11051105          coordinates. See
    1106           :func:`~sage.schemes.generic.toric_variety.normalize_names`
     1106          :func:`~sage.schemes.toric.variety.normalize_names`
    11071107          for acceptable formats.
    11081108
    11091109        OUTPUT:
    11101110
    11111111        A :class:`CPR-Fano toric variety
    1112         <sage.schemes.generic.fano_toric_variety.CPRFanoToricVariety_field>`.
     1112        <sage.schemes.toric.fano_variety.CPRFanoToricVariety_field>`.
    11131113
    11141114        EXAMPLES::
    11151115       
     
    11351135       
    11361136        - ``names`` -- string. Names for the homogeneous
    11371137          coordinates. See
    1138           :func:`~sage.schemes.generic.toric_variety.normalize_names`
     1138          :func:`~sage.schemes.toric.variety.normalize_names`
    11391139          for acceptable formats.
    11401140
    11411141        OUTPUT:
    11421142
    11431143        A :class:`CPR-Fano toric variety
    1144         <sage.schemes.generic.fano_toric_variety.CPRFanoToricVariety_field>`.
     1144        <sage.schemes.toric.fano_variety.CPRFanoToricVariety_field>`.
    11451145
    11461146        EXAMPLES::
    11471147       
     
    11671167       
    11681168        - ``names`` -- string. Names for the homogeneous
    11691169          coordinates. See
    1170           :func:`~sage.schemes.generic.toric_variety.normalize_names`
     1170          :func:`~sage.schemes.toric.variety.normalize_names`
    11711171          for acceptable formats.
    11721172
    11731173        OUTPUT:
    11741174
    11751175        A :class:`CPR-Fano toric variety
    1176         <sage.schemes.generic.fano_toric_variety.CPRFanoToricVariety_field>`.
     1176        <sage.schemes.toric.fano_variety.CPRFanoToricVariety_field>`.
    11771177
    11781178        EXAMPLES::
    11791179       
  • sage/schemes/toric/morphism.py

    diff --git a/sage/schemes/toric/morphism.py b/sage/schemes/toric/morphism.py
    a b  
    8282            [0 : u : v]
    8383
    8484This map is actually the embedding of the
    85 :meth:`~sage.schemes.generic.toric_variety.ToricVariety_field.orbit_closure`
     85:meth:`~sage.schemes.toric.variety.ToricVariety_field.orbit_closure`
    8686associated to one of the rays of the fan of `\mathbb{P}^2`. Now the
    8787morphism is equivariant with respect to **some** map `\CC^\times \to
    8888(\CC^\times)^2` of the maximal tori of `\mathbb{P}^1` and
     
    182182        You should not create objects of this class directly. Use the
    183183        :meth:`~sage.schemes.generic.scheme.hom` method of
    184184        :class:`toric varieties
    185         <sage.schemes.generic.toric_variety.ToricVariety_field>`
     185        <sage.schemes.toric.variety.ToricVariety_field>`
    186186        instead.
    187187
    188188    INPUT:
     
    252252        You should not create objects of this class directly. Use the
    253253        :meth:`~sage.schemes.generic.scheme.hom` method of
    254254        :class:`toric varieties
    255         <sage.schemes.generic.toric_variety.ToricVariety_field>`
     255        <sage.schemes.toric.variety.ToricVariety_field>`
    256256        instead.
    257257
    258258    INPUT:
     
    272272        Defining z0, z1, z2, z3
    273273        sage: P1 = P1xP1.subscheme(z0-z2)
    274274        sage: H = P1xP1.Hom(P1)
    275         sage: import sage.schemes.generic.toric_morphism as MOR
     275        sage: import sage.schemes.toric.morphism as MOR
    276276        sage: MOR.SchemeMorphism_polynomial_toric_variety(H, [z0,z1,z0,z3])
    277277        Scheme morphism:
    278278          From: 2-d toric variety covered by 4 affine patches
     
    295295            Defining z0, z1, z2, z3
    296296            sage: P1 = P1xP1.subscheme(z0-z2)
    297297            sage: H = P1xP1.Hom(P1)
    298             sage: import sage.schemes.generic.toric_morphism as MOR
     298            sage: import sage.schemes.toric.morphism as MOR
    299299            sage: MOR.SchemeMorphism_polynomial_toric_variety(H, [z0,z1,z0,z3])
    300300            Scheme morphism:
    301301              From: 2-d toric variety covered by 4 affine patches
     
    348348        You should not create objects of this class directly. Use the
    349349        :meth:`~sage.schemes.generic.scheme.hom` method of
    350350        :class:`toric varieties
    351         <sage.schemes.generic.toric_variety.ToricVariety_field>`
     351        <sage.schemes.toric.variety.ToricVariety_field>`
    352352        instead.
    353353
    354354    INPUT:
     
    377377          Defn: Defined by sending Rational polyhedral fan in 2-d lattice N
    378378                to Rational polyhedral fan in 2-d lattice N.
    379379        sage: type(f)
    380         <class 'sage.schemes.generic.toric_morphism.SchemeMorphism_fan_toric_variety'>
     380        <class 'sage.schemes.toric.morphism.SchemeMorphism_fan_toric_variety'>
    381381
    382382    Slightly more explicit construction::
    383383
     
    410410            sage: P1 = toric_varieties.P1()
    411411            sage: hom_set = P1xP1.Hom(P1)
    412412            sage: fan_morphism = FanMorphism( matrix(ZZ,[[1],[0]]), P1xP1.fan(), P1.fan() )
    413             sage: from sage.schemes.generic.toric_morphism import SchemeMorphism_fan_toric_variety
     413            sage: from sage.schemes.toric.morphism import SchemeMorphism_fan_toric_variety
    414414            sage: SchemeMorphism_fan_toric_variety(hom_set, fan_morphism)
    415415            Scheme morphism:
    416416              From: 2-d CPR-Fano toric variety covered by 4 affine patches
  • sage/schemes/toric/variety.py

    diff --git a/sage/schemes/toric/variety.py b/sage/schemes/toric/variety.py
    a b  
    33
    44This module provides support for (normal) toric varieties, corresponding to
    55:class:`rational polyhedral fans <sage.geometry.fan.RationalPolyhedralFan>`.
    6 See also :mod:`~sage.schemes.generic.fano_toric_variety` for a more
     6See also :mod:`~sage.schemes.toric.fano_variety` for a more
    77restrictive class of (weak) Fano toric varieties.
    88
    99An **excellent reference on toric varieties** is the book "Toric
     
    205205You can resolve it further using :meth:`~ToricVariety_field.resolve` method,
    206206but (at least for now) you will have to specify which rays should be inserted
    207207into the fan. See also
    208 :func:`~sage.schemes.generic.fano_toric_variety.CPRFanoToricVariety`,
     208:func:`~sage.schemes.toric.fano_variety.CPRFanoToricVariety`,
    209209which can construct some other "nice partial resolutions."
    210210
    211211The intersection theory on toric varieties is very well understood,
    212212and there are explicit algorithms to compute many quantities of
    213213interest. The most important tools are the :class:`cohomology ring
    214214<CohomologyRing>` and the :mod:`Chow group
    215 <sage.schemes.generic.toric_chow_group>`. For `d`-dimensional compact
     215<sage.schemes.toric.chow_group>`. For `d`-dimensional compact
    216216toric varieties with at most orbifold singularities, the rational
    217217cohomology ring `H^*(X,\QQ)` and the rational Chow ring `A^*(X,\QQ) =
    218218A_{d-*}(X)\otimes \QQ` are isomorphic except for a doubling in
     
    348348
    349349    EXAMPLES::
    350350
    351         sage: from sage.schemes.generic.toric_variety import is_ToricVariety
     351        sage: from sage.schemes.toric.variety import is_ToricVariety
    352352        sage: is_ToricVariety(1)
    353353        False
    354354        sage: fan = FaceFan(lattice_polytope.octahedron(2))
     
    779779            sage: P1xP1._point(P1xP1, [1,2,3,4])
    780780            [1 : 2 : 3 : 4]
    781781        """
    782         from sage.schemes.generic.toric_morphism import SchemeMorphism_point_toric_field
     782        from sage.schemes.toric.morphism import SchemeMorphism_point_toric_field
    783783        return SchemeMorphism_point_toric_field(*args, **kwds)
    784784
    785785    def _homset(self, *args, **kwds):
     
    792792
    793793        OUTPUT:
    794794
    795         A :class:`sage.schemes.generic.toric_homset.SchemeHomset_toric_variety`.
     795        A :class:`sage.schemes.toric.homset.SchemeHomset_toric_variety`.
    796796
    797797        EXAMPLES::
    798798
     
    803803             From: 2-d CPR-Fano toric variety covered by 4 affine patches
    804804             To:   1-d CPR-Fano toric variety covered by 2 affine patches
    805805            sage: type(hom_set)
    806             <class 'sage.schemes.generic.toric_homset.SchemeHomset_toric_variety_with_category'>
     806            <class 'sage.schemes.toric.homset.SchemeHomset_toric_variety_with_category'>
    807807
    808808        This is also the Hom-set for algebraic subschemes of toric varieties::
    809809     
     
    827827              Defn: Defined on coordinates by sending [s : t : x : y] to
    828828                    [t : t : x : y]
    829829         """
    830         from sage.schemes.generic.toric_homset import SchemeHomset_toric_variety
     830        from sage.schemes.toric.homset import SchemeHomset_toric_variety
    831831        return SchemeHomset_toric_variety(*args, **kwds)
    832832
    833833    def _repr_(self):
     
    15551555        OUTPUT:
    15561556
    15571557        - :class:`rational divisor class group
    1558           <sage.schemes.generic.toric_divisor.ToricRationalDivisorClassGroup>`.
     1558          <sage.schemes.toric.divisor.ToricRationalDivisorClassGroup>`.
    15591559
    15601560        .. NOTE::
    15611561
     
    15721572            The toric rational divisor class group
    15731573            of a 2-d toric variety covered by 4 affine patches
    15741574        """
    1575         from sage.schemes.generic.toric_divisor import ToricRationalDivisorClassGroup
     1575        from sage.schemes.toric.divisor import ToricRationalDivisorClassGroup
    15761576        return ToricRationalDivisorClassGroup(self)
    15771577
    15781578    def Chow_group(self, base_ring=ZZ):
     
    15861586
    15871587        OUTPUT:
    15881588       
    1589         A :class:`sage.schemes.generic.toric_chow_group.ChowGroup_class`
     1589        A :class:`sage.schemes.toric.chow_group.ChowGroup_class`
    15901590
    15911591        EXAMPLES::
    15921592
     
    15951595            sage: A.gens()
    15961596            (( 1 | 0 | 0 ), ( 0 | 1 | 0 ), ( 0 | 0 | 1 ))
    15971597        """
    1598         from sage.schemes.generic.toric_chow_group import ChowGroup
     1598        from sage.schemes.toric.chow_group import ChowGroup
    15991599        return ChowGroup(self,base_ring)
    16001600
    16011601    def cartesian_product(self, other,
     
    23212321            sage: dP6.integrate( HH(dP6.K())^2 )
    23222322            6
    23232323        """
    2324         from sage.schemes.generic.toric_divisor import ToricDivisor
     2324        from sage.schemes.toric.divisor import ToricDivisor
    23252325        return ToricDivisor(self, [-1]*self._fan.nrays())
    23262326
    23272327    def divisor(self, arg, base_ring=None, check=True, reduce=True):
     
    23312331        INPUT:
    23322332
    23332333        The arguments are the same as in
    2334         :func:`sage.schemes.generic.toric_divisor.ToricDivisor`, with the
     2334        :func:`sage.schemes.toric.divisor.ToricDivisor`, with the
    23352335        exception of defining a divisor with a single integer: this method
    23362336        considers it to be the index of a ray of the :meth:`fan` of ``self``.
    23372337
    23382338        OUTPUT:
    23392339
    2340         - A :class:`sage.schemes.generic.toric_divisor.ToricDivisor_generic`
     2340        - A :class:`sage.schemes.toric.divisor.ToricDivisor_generic`
    23412341
    23422342        EXAMPLES::
    23432343       
     
    23792379            arg = [(1, self.gen(arg))]
    23802380            check = True # 1 must be coerced into the coefficient ring
    23812381            reduce = False
    2382         from sage.schemes.generic.toric_divisor import ToricDivisor
     2382        from sage.schemes.toric.divisor import ToricDivisor
    23832383        return ToricDivisor(self, ring=base_ring, arg=arg,
    23842384                            check=check, reduce=reduce)
    23852385
     
    24352435        The free Abelian agroup of toric Weil divisors, that is,
    24362436        formal ``base_ring``-linear combinations of codimension-one
    24372437        toric subvarieties. The output will be an instance of
    2438         :class:`sage.schemes.generic.toric_divisor.ToricDivisorGroup`.
     2438        :class:`sage.schemes.toric.divisor.ToricDivisorGroup`.
    24392439 
    24402440        The `i`-th generator of the divisor group is the divisor where
    24412441        the `i`-th homogeneous coordinate vanishes, `\{z_i=0\}`.
     
    24532453            sage: dP6.coordinate_ring()
    24542454            Multivariate Polynomial Ring in x, u, y, v, z, w over Rational Field
    24552455        """
    2456         from sage.schemes.generic.toric_divisor import ToricDivisorGroup
     2456        from sage.schemes.toric.divisor import ToricDivisorGroup
    24572457        return ToricDivisorGroup(self, base_ring);
    24582458
    24592459    def _semigroup_ring(self, cone=None, names=None):
     
    24962496              Ideal (0) of Multivariate Polynomial Ring in z0, z1 over Finite Field of size 101,
    24972497              2-d cone in 2-d lattice M)
    24982498        """
    2499         from sage.schemes.generic.toric_ideal import ToricIdeal
     2499        from sage.schemes.toric.ideal import ToricIdeal
    25002500        if cone is None:
    25012501            assert self.is_affine(), \
    25022502                'You may only omit the cone argument for an affine toric variety!'
     
    27582758
    27592759    As promised, all parameters are optional::
    27602760
    2761         sage: from sage.schemes.generic.toric_variety import normalize_names
     2761        sage: from sage.schemes.toric.variety import normalize_names
    27622762        sage: normalize_names()
    27632763        []
    27642764
     
    28912891
    28922892    EXAMPLES::
    28932893
    2894         sage: from sage.schemes.generic.toric_variety import certify_names
     2894        sage: from sage.schemes.toric.variety import certify_names
    28952895        sage: certify_names([])
    28962896        sage: certify_names(["a", "x0", "x_45"])
    28972897        sage: certify_names(["", "x0", "x_45"])
     
    29622962
    29632963    This is equivalent to::
    29642964       
    2965         sage: from sage.schemes.generic.toric_variety import CohomologyRing
     2965        sage: from sage.schemes.toric.variety import CohomologyRing
    29662966        sage: CohomologyRing(P2)
    29672967        Rational cohomology ring of a 2-d CPR-Fano toric variety covered by 3 affine patches
    29682968    """
     
    31043104            sage: H(1)
    31053105            [1]
    31063106            sage: type( H(1) )
    3107             <class 'sage.schemes.generic.toric_variety.CohomologyClass'>
     3107            <class 'sage.schemes.toric.variety.CohomologyClass'>
    31083108            sage: P2.inject_variables()
    31093109            Defining x, y, z
    31103110            sage: H(1+x*y+z)
     
    31453145            sage: H(1)
    31463146            [1]
    31473147            sage: type( H(1) )
    3148             <class 'sage.schemes.generic.toric_variety.CohomologyClass'>
     3148            <class 'sage.schemes.toric.variety.CohomologyClass'>
    31493149        """
    31503150        return self._element_constructor_(x)
    31513151
     
    32123212   
    32133213        sage: P2 = toric_varieties.P2()
    32143214        sage: HH = P2.cohomology_ring()
    3215         sage: from sage.schemes.generic.toric_variety import is_CohomologyClass
     3215        sage: from sage.schemes.toric.variety import is_CohomologyClass
    32163216        sage: is_CohomologyClass( HH.one() )
    32173217        True
    32183218        sage: is_CohomologyClass( HH(P2.fan(1)[0]) )
     
    32653265       
    32663266            sage: P2 = toric_varieties.P2()
    32673267            sage: H = P2.cohomology_ring()
    3268             sage: from sage.schemes.generic.toric_variety import CohomologyClass
     3268            sage: from sage.schemes.toric.variety import CohomologyClass
    32693269            sage: CohomologyClass(H, H.defining_ideal().ring().zero() )
    32703270            [0]
    32713271        """