# Ticket #12173: undo.patch

File undo.patch, 4.2 KB (added by jdemeyer, 9 years ago)

Original changes, not applied anymore

`diff --git a/sage/rings/polynomial/padics/polynomial_padic_capped_relative_dense.py b/sage/rings/polynomial/padics/polynomial_padic_capped_relative_dense.py`
 a (2 + O(13^7))*t^3 + (13^2 + O(13^9))*t + (12 + 12*13 + 12*13^2 + 12*13^3 + 12*13^4 + 12*13^5 + 12*13^6 + O(13^7)) sage: a.list() [12 + 12*13 + 12*13^2 + 12*13^3 + 12*13^4 + 12*13^5 + 12*13^6 + O(13^7), 13^2 + O(13^9), 0, 2 + O(13^7)] 13^2 + O(13^9), 0, 2 + O(13^7)] """ if self._list is None: (O(13^7))*t^6 + (O(13^7))*t^5 + (2*13 + O(13^6))*t^4 + (5*13 + O(13^6))*t^3 + (4*13 + O(13^5))*t^2 + (13 + O(13^5))*t + (O(13^7)) sage: e.list() [O(13^7), 13 + O(13^5), 4*13 + O(13^5), 5*13 + O(13^6), 2*13 + O(13^6), O(13^7), O(13^7)] 13 + O(13^5), 4*13 + O(13^5), 5*13 + O(13^6), 2*13 + O(13^6), O(13^7), O(13^7)] """ self._normalize() right._normalize()
• ## sage/rings/polynomial/polynomial_integer_dense_flint.pyx

`diff --git a/sage/rings/polynomial/polynomial_integer_dense_flint.pyx b/sage/rings/polynomial/polynomial_integer_dense_flint.pyx`
 a def __call__(self, *x, **kwds): """ Calls this polynomial with the given parameters, which can be interpreted as polynomial composition or evaluation by this Calls this polynomial with the given parameters, which can be interpreted as polynomial composition or evaluation by this method. If the argument is not simply an integer (``int``, ``long`` or ``Integer``) or a polynomial (of the same type as ``self``), the call is passed on to the generic implementation in the If the argument is not simply an integer (``int``, ``long`` or ``Integer``) or a polynomial (of the same type as ``self``), the call is passed on to the generic implementation in the ``Polynomial`` class. EXAMPLES: The first example illustrates polynomial composition:: sage: R. = ZZ[] sage: f = t^2 - 1 sage: g = t + 1 sage: f(g)          # indirect doctest t^2 + 2*t Now we illustrate how a polynomial can be evaluated at an Now we illustrate how a polynomial can be evaluated at an integer:: sage: f(2)          # indirect doctest 3 """ cdef unsigned long limbs cdef fmpz_t a_fmpz cdef fmpz_t z_fmpz if len(x) == 1: if len(x) == 1: x0 = x[0] if isinstance(x, Polynomial_integer_dense_flint): f = self._new()
• ## sage/libs/flint/fmpq_poly.pxd

`diff --git a/sage/libs/flint/fmpq_poly.pxd b/sage/libs/flint/fmpq_poly.pxd`
 a void fmpq_poly_from_string(fmpq_poly_t, char *) char * fmpq_poly_to_string(fmpq_poly_t, char *) char * fmpq_poly_to_string_pretty(fmpq_poly_t, char *)
• ## sage/modular/modform/eis_series.py

`diff --git a/sage/modular/modform/eis_series.py b/sage/modular/modform/eis_series.py`
 a # This used to work with check=False, but that can only be regarded as # an improbable lucky miracle. Enabling checking is a noticeable speed # regression; the morally right fix would be to expose FLINT's # fmpz_poly_to_nmod_poly command (at least for word-sized N). # fmpz_poly_to_zmod_poly command (at least for word-sized N). if a0fac is not None: return a0fac*R(eisenstein_series_poly(k, prec).list(), prec=prec, check=True) else: