# HG changeset patch
# User Jeroen Demeyer <jdemeyer@cage.ugent.be>
# Date 1366200020 -7200
# Node ID 06a3f2c98282375d37b3816bcd7d65d2afe14af6
# Parent c7e8ce34f41d2b4bf38426ac746c587e203c7380
Doctest fixes
diff --git a/sage/combinat/q_bernoulli.pyx b/sage/combinat/q_bernoulli.pyx
a
|
b
|
|
29 | 29 | sage: q_bernoulli(0) |
30 | 30 | 1 |
31 | 31 | sage: q_bernoulli(1) |
32 | | 1/(-q - 1) |
| 32 | -1/(q + 1) |
33 | 33 | sage: q_bernoulli(2) |
34 | 34 | q/(q^3 + 2*q^2 + 2*q + 1) |
35 | 35 | sage: all(q_bernoulli(i)(q=1)==bernoulli(i) for i in range(12)) |
diff --git a/sage/combinat/sf/jack.py b/sage/combinat/sf/jack.py
a
|
b
|
|
334 | 334 | |
335 | 335 | sage: s = Sym.schur() |
336 | 336 | sage: JJ(s([3])) # indirect doctest |
337 | | ((-t^2+3*t-2)/(-6*t^2-18*t-12))*JackJ[1, 1, 1] + ((2*t-2)/(2*t^2+5*t+2))*JackJ[2, 1] + (1/(2*t^2+3*t+1))*JackJ[3] |
| 337 | ((t^2-3*t+2)/(6*t^2+18*t+12))*JackJ[1, 1, 1] + ((2*t-2)/(2*t^2+5*t+2))*JackJ[2, 1] + (1/(2*t^2+3*t+1))*JackJ[3] |
338 | 338 | sage: JJ(s([2,1])) |
339 | 339 | ((t-1)/(3*t+6))*JackJ[1, 1, 1] + (1/(t+2))*JackJ[2, 1] |
340 | 340 | sage: JJ(s([1,1,1])) |
… |
… |
|
367 | 367 | sage: a.scalar(JP([1,1])) |
368 | 368 | 0 |
369 | 369 | sage: JP(JQp([2])) # todo: missing auto normalization |
370 | | ((-t+1)/(-t-1))*JackP[1, 1] + JackP[2] |
| 370 | ((t-1)/(t+1))*JackP[1, 1] + JackP[2] |
371 | 371 | sage: JP._normalize(JP(JQp([2]))) |
372 | | ((-t+1)/(-t-1))*JackP[1, 1] + JackP[2] |
| 372 | ((t-1)/(t+1))*JackP[1, 1] + JackP[2] |
373 | 373 | """ |
374 | 374 | return JackPolynomials_qp(self) |
375 | 375 | |
… |
… |
|
572 | 572 | 0 |
573 | 573 | sage: s = P.realization_of().s() |
574 | 574 | sage: P(Qp([2])) # todo: missing auto normalization |
575 | | ((-t+1)/(-t-1))*JackP[1, 1] + JackP[2] |
| 575 | ((t-1)/(t+1))*JackP[1, 1] + JackP[2] |
576 | 576 | sage: P._normalize(P(Qp([2]))) |
577 | | ((-t+1)/(-t-1))*JackP[1, 1] + JackP[2] |
| 577 | ((t-1)/(t+1))*JackP[1, 1] + JackP[2] |
578 | 578 | """ |
579 | 579 | (R, t) = NoneConvention(R, t) |
580 | 580 | sage.misc.superseded.deprecation(5457, "Deprecation warning: In the future use SymmetricFunctions(R).jack(t=%s).Qp()"%(t)) |
… |
… |
|
943 | 943 | |
944 | 944 | sage: JJ = SymmetricFunctions(FractionField(QQ['t'])).jack().J() |
945 | 945 | sage: JJ([1])^2 # indirect doctest |
946 | | (-t/(-t-1))*JackJ[1, 1] + (1/(t+1))*JackJ[2] |
| 946 | (t/(t+1))*JackJ[1, 1] + (1/(t+1))*JackJ[2] |
947 | 947 | sage: JJ([2])^2 |
948 | | (-2*t^2/(-2*t^2-3*t-1))*JackJ[2, 2] + (-4*t/(-3*t^2-4*t-1))*JackJ[3, 1] + ((t+1)/(6*t^2+5*t+1))*JackJ[4] |
| 948 | (2*t^2/(2*t^2+3*t+1))*JackJ[2, 2] + (4*t/(3*t^2+4*t+1))*JackJ[3, 1] + ((t+1)/(6*t^2+5*t+1))*JackJ[4] |
949 | 949 | sage: JQ = SymmetricFunctions(FractionField(QQ['t'])).jack().Q() |
950 | 950 | sage: JQ([1])^2 # indirect doctest |
951 | 951 | JackQ[1, 1] + (2/(t+1))*JackQ[2] |
… |
… |
|
992 | 992 | |
993 | 993 | sage: Sym = SymmetricFunctions(QQ['t'].fraction_field()) |
994 | 994 | sage: Sym.jack().P()[2,2].coproduct() #indirect doctest |
995 | | JackP[] # JackP[2, 2] + (2/(t+1))*JackP[1] # JackP[2, 1] + ((-8*t-4)/(-t^3-4*t^2-5*t-2))*JackP[1, 1] # JackP[1, 1] + JackP[2] # JackP[2] + (2/(t+1))*JackP[2, 1] # JackP[1] + JackP[2, 2] # JackP[] |
| 995 | JackP[] # JackP[2, 2] + (2/(t+1))*JackP[1] # JackP[2, 1] + ((8*t+4)/(t^3+4*t^2+5*t+2))*JackP[1, 1] # JackP[1, 1] + JackP[2] # JackP[2] + (2/(t+1))*JackP[2, 1] # JackP[1] + JackP[2, 2] # JackP[] |
996 | 996 | """ |
997 | 997 | from sage.categories.tensor import tensor |
998 | 998 | s = self.realization_of().schur() |
… |
… |
|
1112 | 1112 | sage: l = lambda c: [ (i[0],[j for j in sorted(i[1].items())]) for i in sorted(c.items())] |
1113 | 1113 | sage: JP._m_cache(2) |
1114 | 1114 | sage: l(JP._self_to_m_cache[2]) |
1115 | | [([1, 1], [([1, 1], 1)]), ([2], [([1, 1], -2/(-t - 1)), ([2], 1)])] |
| 1115 | [([1, 1], [([1, 1], 1)]), ([2], [([1, 1], 2/(t + 1)), ([2], 1)])] |
1116 | 1116 | sage: l(JP._m_to_self_cache[2]) |
1117 | | [([1, 1], [([1, 1], 1)]), ([2], [([1, 1], 2/(-t - 1)), ([2], 1)])] |
| 1117 | [([1, 1], [([1, 1], 1)]), ([2], [([1, 1], -2/(t + 1)), ([2], 1)])] |
1118 | 1118 | sage: JP._m_cache(3) |
1119 | 1119 | sage: l(JP._m_to_self_cache[3]) |
1120 | 1120 | [([1, 1, 1], [([1, 1, 1], 1)]), |
1121 | 1121 | ([2, 1], [([1, 1, 1], -6/(t + 2)), ([2, 1], 1)]), |
1122 | | ([3], [([1, 1, 1], -6/(-t^2 - 3*t - 2)), ([2, 1], -3/(2*t + 1)), ([3], 1)])] |
| 1122 | ([3], [([1, 1, 1], 6/(t^2 + 3*t + 2)), ([2, 1], -3/(2*t + 1)), ([3], 1)])] |
1123 | 1123 | sage: l(JP._self_to_m_cache[3]) |
1124 | 1124 | [([1, 1, 1], [([1, 1, 1], 1)]), |
1125 | 1125 | ([2, 1], [([1, 1, 1], 6/(t + 2)), ([2, 1], 1)]), |
1126 | | ([3], [([1, 1, 1], -6/(-2*t^2 - 3*t - 1)), ([2, 1], 3/(2*t + 1)), ([3], 1)])] |
| 1126 | ([3], [([1, 1, 1], 6/(2*t^2 + 3*t + 1)), ([2, 1], 3/(2*t + 1)), ([3], 1)])] |
1127 | 1127 | """ |
1128 | 1128 | if n in self._self_to_m_cache: |
1129 | 1129 | return |
… |
… |
|
1190 | 1190 | sage: JP = SymmetricFunctions(FractionField(QQ['t'])).jack().P() |
1191 | 1191 | sage: m = JP.symmetric_function_ring().m() |
1192 | 1192 | sage: JP([1])^2 # indirect doctest |
1193 | | (-2*t/(-t-1))*JackP[1, 1] + JackP[2] |
| 1193 | (2*t/(t+1))*JackP[1, 1] + JackP[2] |
1194 | 1194 | sage: m(_) |
1195 | 1195 | 2*m[1, 1] + m[2] |
1196 | 1196 | sage: JP = SymmetricFunctions(QQ).jack(t=2).P() |
… |
… |
|
1390 | 1390 | sage: JQp = SymmetricFunctions(FractionField(QQ['t'])).jack().Qp() |
1391 | 1391 | sage: h = JQp.symmetric_function_ring().h() |
1392 | 1392 | sage: JQp([1])^2 # indirect doctest |
1393 | | JackQp[1, 1] + (-2/(-t-1))*JackQp[2] |
| 1393 | JackQp[1, 1] + (2/(t+1))*JackQp[2] |
1394 | 1394 | sage: h(_) |
1395 | 1395 | h[1, 1] |
1396 | 1396 | sage: JQp = SymmetricFunctions(QQ).jack(t=2).Qp() |
… |
… |
|
1419 | 1419 | sage: l = lambda c: [ (i[0],[j for j in sorted(i[1].items())]) for i in sorted(c.items())] |
1420 | 1420 | sage: JQp._h_cache(2) |
1421 | 1421 | sage: l(JQp._self_to_h_cache[2]) |
1422 | | [([1, 1], [([1, 1], 1), ([2], 2/(-t - 1))]), ([2], [([2], 1)])] |
| 1422 | [([1, 1], [([1, 1], 1), ([2], -2/(t + 1))]), ([2], [([2], 1)])] |
1423 | 1423 | sage: l(JQp._h_to_self_cache[2]) |
1424 | | [([1, 1], [([1, 1], 1), ([2], -2/(-t - 1))]), ([2], [([2], 1)])] |
| 1424 | [([1, 1], [([1, 1], 1), ([2], 2/(t + 1))]), ([2], [([2], 1)])] |
1425 | 1425 | sage: JQp._h_cache(3) |
1426 | 1426 | sage: l(JQp._h_to_self_cache[3]) |
1427 | | [([1, 1, 1], [([1, 1, 1], 1), ([2, 1], 6/(t + 2)), ([3], -6/(-2*t^2 - 3*t - 1))]), ([2, 1], [([2, 1], 1), ([3], 3/(2*t + 1))]), ([3], [([3], 1)])] |
| 1427 | [([1, 1, 1], [([1, 1, 1], 1), ([2, 1], 6/(t + 2)), ([3], 6/(2*t^2 + 3*t + 1))]), ([2, 1], [([2, 1], 1), ([3], 3/(2*t + 1))]), ([3], [([3], 1)])] |
1428 | 1428 | sage: l(JQp._self_to_h_cache[3]) |
1429 | | [([1, 1, 1], [([1, 1, 1], 1), ([2, 1], -6/(t + 2)), ([3], -6/(-t^2 - 3*t - 2))]), ([2, 1], [([2, 1], 1), ([3], -3/(2*t + 1))]), ([3], [([3], 1)])] |
| 1429 | [([1, 1, 1], [([1, 1, 1], 1), ([2, 1], -6/(t + 2)), ([3], 6/(t^2 + 3*t + 2))]), ([2, 1], [([2, 1], 1), ([3], -3/(2*t + 1))]), ([3], [([3], 1)])] |
1430 | 1430 | """ |
1431 | 1431 | if n in self._self_to_h_cache: |
1432 | 1432 | return |
… |
… |
|
1520 | 1520 | sage: Sym = SymmetricFunctions(QQ['t'].fraction_field()) |
1521 | 1521 | sage: JQp = Sym.jack().Qp() |
1522 | 1522 | sage: JQp[2,2].coproduct() #indirect doctest |
1523 | | JackQp[] # JackQp[2, 2] + (2*t/(t+1))*JackQp[1] # JackQp[2, 1] + JackQp[1, 1] # JackQp[1, 1] + ((-4*t^3-8*t^2)/(-2*t^3-5*t^2-4*t-1))*JackQp[2] # JackQp[2] + (2*t/(t+1))*JackQp[2, 1] # JackQp[1] + JackQp[2, 2] # JackQp[] |
| 1523 | JackQp[] # JackQp[2, 2] + (2*t/(t+1))*JackQp[1] # JackQp[2, 1] + JackQp[1, 1] # JackQp[1, 1] + ((4*t^3+8*t^2)/(2*t^3+5*t^2+4*t+1))*JackQp[2] # JackQp[2] + (2*t/(t+1))*JackQp[2, 1] # JackQp[1] + JackQp[2, 2] # JackQp[] |
1524 | 1524 | """ |
1525 | 1525 | h = elt.parent().realization_of().h() |
1526 | 1526 | parent = elt.parent() |
diff --git a/sage/rings/polynomial/padics/polynomial_padic_capped_relative_dense.py b/sage/rings/polynomial/padics/polynomial_padic_capped_relative_dense.py
a
|
b
|
|
407 | 407 | |
408 | 408 | EXAMPLES:: |
409 | 409 | |
410 | | sage: K = Qp(13,7) |
411 | | sage: R.<t> = K[] |
412 | | sage: a = 13^7*t^3 + K(169,4)*t - 13^4 |
413 | | sage: a[1] |
414 | | 13^2 + O(13^4) |
415 | | sage: a[1:2] |
416 | | (13^2 + O(13^4))*t |
| 410 | sage: K = Qp(13,7) |
| 411 | sage: R.<t> = K[] |
| 412 | sage: a = 13^7*t^3 + K(169,4)*t - 13^4 |
| 413 | sage: a[1] |
| 414 | 13^2 + O(13^4) |
| 415 | sage: a[1:2] |
| 416 | (13^2 + O(13^4))*t |
417 | 417 | """ |
418 | 418 | if isinstance(n, slice): |
419 | 419 | start, stop = n.start, n.stop |
diff --git a/sage/rings/polynomial/polynomial_zmod_flint.pyx b/sage/rings/polynomial/polynomial_zmod_flint.pyx
a
|
b
|
|
497 | 497 | EXAMPLES:: |
498 | 498 | |
499 | 499 | sage: P.<a>=GF(7)[] |
500 | | sage: a = P(range(10)); b = P(range(5, 15)) |
501 | | sage: a._mul_trunc_opposite(b, 10) |
| 500 | sage: b = P(range(10)); c = P(range(5, 15)) |
| 501 | sage: (b._mul_trunc_opposite(c, 10))[10:18] |
502 | 502 | 5*a^17 + 2*a^16 + 6*a^15 + 4*a^14 + 4*a^13 + 5*a^10 |
503 | | sage: a._mul_trunc_opposite(b, 18) |
| 503 | sage: (b._mul_trunc_opposite(c, 18))[18:] |
504 | 504 | 0 |
505 | 505 | |
506 | 506 | TESTS:: |
diff --git a/sage/schemes/elliptic_curves/ell_padic_field.py b/sage/schemes/elliptic_curves/ell_padic_field.py
a
|
b
|
|
39 | 39 | def __init__(self, x, y=None): |
40 | 40 | """ |
41 | 41 | Constructor from [a1,a2,a3,a4,a6] or [a4,a6]. |
| 42 | |
42 | 43 | EXAMPLES:: |
43 | 44 | |
44 | 45 | sage: Qp=pAdicField(17) |
… |
… |
|
72 | 73 | Returns the Frobenius as a function on the group of points of |
73 | 74 | this elliptic curve. |
74 | 75 | |
75 | | EXAMPLE: |
| 76 | EXAMPLE:: |
| 77 | |
76 | 78 | sage: Qp=pAdicField(13) |
77 | 79 | sage: E=EllipticCurve(Qp,[1,1]) |
78 | 80 | sage: type(E.frobenius()) |
… |
… |
|
87 | 89 | K = self.base_field() |
88 | 90 | p = K.prime() |
89 | 91 | x = PolynomialRing(K, 'x').gen(0) |
90 | | |
| 92 | |
91 | 93 | a1, a2, a3, a4, a6 = self.a_invariants() |
92 | 94 | if a1 != 0 or a2 != 0: |
93 | 95 | raise NotImplementedError, "Curve must be in weierstrass normal form." |
94 | | |
| 96 | |
95 | 97 | f = x*x*x + a2*x*x + a4*x + a6 |
96 | 98 | h = (f(x**p) - f**p) |
97 | 99 | |
… |
… |
|
105 | 107 | if (yres-y0).valuation() == 0: |
106 | 108 | yres=-yres |
107 | 109 | return self.point([xres,yres, K(1)]) |
108 | | |
| 110 | |
109 | 111 | self._frob = _frob |
110 | | |
| 112 | |
111 | 113 | if P is None: |
112 | 114 | return _frob |
113 | 115 | else: |
114 | | return _frob(P) |
| 116 | return _frob(P) |