Ticket #12173: flint-2.3-jp.2.patch

File flint-2.3-jp.2.patch, 3.9 KB (added by jpflori, 10 years ago)

Some further changes. For testing only.

  • sage/libs/flint/flint.pxd

    # HG changeset patch
    # User Jean-Pierre Flori <jean-pierre.flor@ssi.gouv.fr>
    # Date 1338366773 -7200
    # Node ID 6bba1cbeedce1d72df46e8e5e05b38b56e70a0d8
    # Parent  4f6a3b00730d86706f1f3fd75cab27d751eab8d6
    imported patch flint2.3-jp.diff
    
    diff --git a/sage/libs/flint/flint.pxd b/sage/libs/flint/flint.pxd
    a b  
    44    cdef long FLINT_D_BITS
    55
    66    cdef unsigned long FLINT_BIT_COUNT(unsigned long)
    7     void flint_stack_cleanup()
     7    void _fmpz_cleanup()
  • sage/libs/flint/flint.pyx

    diff --git a/sage/libs/flint/flint.pyx b/sage/libs/flint/flint.pyx
    a b  
    1414include "../../ext/cdefs.pxi"
    1515
    1616def free_flint_stack():
    17     flint_stack_cleanup()
     17    _fmpz_cleanup()
  • sage/libs/flint/ulong_extras.pxd

    diff --git a/sage/libs/flint/ulong_extras.pxd b/sage/libs/flint/ulong_extras.pxd
    a b  
    88
    99    ctypedef struct n_factor_t:
    1010        int num
     11        unsigned long exp[15]
    1112        unsigned long p[15]
    12         unsigned long exp[15]
    1313
    1414    cdef int n_jacobi(long x, unsigned long y)
    1515
     
    1818    cdef unsigned long n_gcd(long x, long y)
    1919
    2020    cdef void n_factor(n_factor_t * factors, unsigned long n, int proved)
     21    cdef void n_factor_init(n_factor_t * factors)
  • sage/libs/flint/zmod_poly_linkage.pxi

    diff --git a/sage/libs/flint/zmod_poly_linkage.pxi b/sage/libs/flint/zmod_poly_linkage.pxi
    a b  
    610610        sage: (G//d)*d == G
    611611        True
    612612    """
     613    printf("%dl\n",n)
     614    nmod_poly_print(a)
     615    printf("\n")
     616    nmod_poly_print(b)
     617    printf("\n")
    613618    nmod_poly_xgcd(res, s, t, a, b)
    614619
    615620
  • sage/rings/integer.pyx

    diff --git a/sage/rings/integer.pyx b/sage/rings/integer.pyx
    a b  
    33693369            if proof is None:
    33703370                from sage.structure.proof.proof import get_flag
    33713371                proof = get_flag(proof, "arithmetic")
     3372            n_factor_init(&f)
    33723373            n_factor(&f, mpz_get_ui(n.value), proof)
    33733374            F = [(Integer(f.p[i]), int(f.exp[i])) for i from 0 <= i < f.num]
    33743375            F.sort()
  • sage/schemes/elliptic_curves/descent_two_isogeny.pyx

    diff --git a/sage/schemes/elliptic_curves/descent_two_isogeny.pyx b/sage/schemes/elliptic_curves/descent_two_isogeny.pyx
    a b  
    12271227        p_list_mpz = <mpz_t *> sage_malloc(20 * sizeof(mpz_t))
    12281228        mpz_init_set_ui(p_list_mpz[0], ui2)
    12291229        p_list_len = 1
     1230        n_factor_init(&fact)
    12301231        n_factor(&fact, mpz_get_ui(d_mpz), proof)
    12311232        for i from 0 <= i < fact.num:
    12321233            p = fact.p[i]
  • sage/schemes/elliptic_curves/ell_padic_field.py

    diff --git a/sage/schemes/elliptic_curves/ell_padic_field.py b/sage/schemes/elliptic_curves/ell_padic_field.py
    a b  
    3939    def __init__(self, x, y=None):
    4040        """
    4141        Constructor from [a1,a2,a3,a4,a6] or [a4,a6].
    42         EXAMPLES:
    43         sage: Qp=pAdicField(17)
    44         sage: E=EllipticCurve(Qp,[2,3]); E
    45         Elliptic Curve defined by y^2  = x^3 + (2+O(17^20))*x + (3+O(17^20)) over 17-adic Field with capped relative precision 20
    46         sage: E == loads(dumps(E))
    47         True
     42
     43        EXAMPLES::
     44
     45            sage: Qp=pAdicField(17)
     46            sage: E=EllipticCurve(Qp,[2,3]); E
     47            Elliptic Curve defined by y^2  = x^3 + (2+O(17^20))*x + (3+O(17^20)) over 17-adic Field with capped relative precision 20
     48            sage: E == loads(dumps(E))
     49            True
    4850        """
    4951        if y is None:
    5052            if isinstance(x, list):
     
    7173        Returns the Frobenius as a function on the group of points of
    7274        this elliptic curve.
    7375
    74         EXAMPLE:
     76        EXAMPLE::
     77
    7578            sage: Qp=pAdicField(13)
    7679            sage: E=EllipticCurve(Qp,[1,1])
    7780            sage: type(E.frobenius())