# HG changeset patch
# User Simon King <simon.king@uni-jena.de>
# Date 1312633346 -7200
# Node ID f250162917ed27d2fe35f0952289899b32572e47
# Parent 830e31cecb6cf2028ce6748fedc5a136a61a6703
#11431: Work around a bug on Solaris revealed by the previous patches
diff --git a/sage/interfaces/singular.py b/sage/interfaces/singular.py
a
|
b
|
|
1350 | 1350 | """ |
1351 | 1351 | Return the current basering in Singular as a polynomial ring or quotient ring. |
1352 | 1352 | |
1353 | | EXAMPLE:: |
| 1353 | EXAMPLE: |
1354 | 1354 | |
| 1355 | The first line of this example is to work around a problem |
| 1356 | on Solaris machines (see trac ticket #11645):: |
| 1357 | |
| 1358 | sage: R = GF(9,'a')['x','y'] |
1355 | 1359 | sage: singular.eval('ring r1 = (9,x),(a,b,c,d,e,f),(M((1,2,3,0)),wp(2,3),lp)') |
1356 | 1360 | 'ring r1 = (9,x),(a,b,c,d,e,f),(M((1,2,3,0)),wp(2,3),lp);' |
1357 | 1361 | sage: R = singular('r1').sage_global_ring() |
… |
… |
|
1405 | 1409 | sage: R.base_ring()('I') |
1406 | 1410 | 1.00000000000000*I |
1407 | 1411 | |
1408 | | In our last example, the base ring is a quotient ring:: |
| 1412 | In our last example, the base ring is a quotient ring. |
| 1413 | The first line is to work around a problem on Solaris |
| 1414 | machines (see trac ticket #11645):: |
1409 | 1415 | |
| 1416 | sage: R = GF(9,'a')['x','y'] |
1410 | 1417 | sage: singular.eval('ring r6 = (9,a), (x,y,z),lp') |
1411 | 1418 | 'ring r6 = (9,a), (x,y,z),lp;' |
1412 | 1419 | sage: Q = singular('std(ideal(x^2,x+y^2+z^3))', type='qring') |
… |
… |
|
1745 | 1752 | sage: singular('ringlist(basering)').sage() |
1746 | 1753 | [['integer'], ['x', 'y', 'z'], [['lp', (1, 1, 1)], ['C', (0)]], Ideal (0) of Multivariate Polynomial Ring in x, y, z over Integer Ring] |
1747 | 1754 | |
1748 | | :: |
| 1755 | The first line of the next example is to work around a problem |
| 1756 | on Solaris machines (see trac ticket #11645):: |
1749 | 1757 | |
| 1758 | sage: R = GF(9,'a')['x','y'] |
1750 | 1759 | sage: singular.eval('ring r10 = (9,a), (x,y,z),lp') |
1751 | 1760 | 'ring r10 = (9,a), (x,y,z),lp;' |
1752 | 1761 | sage: singular.eval('setring R') |
diff --git a/sage/rings/polynomial/term_order.py b/sage/rings/polynomial/term_order.py
a
|
b
|
|
1873 | 1873 | orders for modules. This is not taken into account in |
1874 | 1874 | Sage. |
1875 | 1875 | |
1876 | | EXAMPLE:: |
| 1876 | EXAMPLE: |
1877 | 1877 | |
| 1878 | The first line of this example is to work around a problem |
| 1879 | on Solaris machines (see trac ticket #11645):: |
| 1880 | |
| 1881 | sage: R = GF(9,'a')['x','y'] |
1878 | 1882 | sage: singular.eval('ring r1 = (9,x),(a,b,c,d,e,f),(M((1,2,3,0)),wp(2,3),lp)') |
1879 | 1883 | 'ring r1 = (9,x),(a,b,c,d,e,f),(M((1,2,3,0)),wp(2,3),lp);' |
1880 | 1884 | sage: from sage.rings.polynomial.term_order import termorder_from_singular |