# HG changeset patch
# User Simon King <simon.king@unijena.de>
# Date 1312633346 7200
# Node ID f250162917ed27d2fe35f0952289899b32572e47
# Parent 830e31cecb6cf2028ce6748fedc5a136a61a6703
#11431: Work around a bug on Solaris revealed by the previous patches
diff git a/sage/interfaces/singular.py b/sage/interfaces/singular.py
a

b


1350  1350  """ 
1351  1351  Return the current basering in Singular as a polynomial ring or quotient ring. 
1352  1352  
1353   EXAMPLE:: 
 1353  EXAMPLE: 
1354  1354  
 1355  The first line of this example is to work around a problem 
 1356  on Solaris machines (see trac ticket #11645):: 
 1357  
 1358  sage: R = GF(9,'a')['x','y'] 
1355  1359  sage: singular.eval('ring r1 = (9,x),(a,b,c,d,e,f),(M((1,2,3,0)),wp(2,3),lp)') 
1356  1360  'ring r1 = (9,x),(a,b,c,d,e,f),(M((1,2,3,0)),wp(2,3),lp);' 
1357  1361  sage: R = singular('r1').sage_global_ring() 
… 
… 

1405  1409  sage: R.base_ring()('I') 
1406  1410  1.00000000000000*I 
1407  1411  
1408   In our last example, the base ring is a quotient ring:: 
 1412  In our last example, the base ring is a quotient ring. 
 1413  The first line is to work around a problem on Solaris 
 1414  machines (see trac ticket #11645):: 
1409  1415  
 1416  sage: R = GF(9,'a')['x','y'] 
1410  1417  sage: singular.eval('ring r6 = (9,a), (x,y,z),lp') 
1411  1418  'ring r6 = (9,a), (x,y,z),lp;' 
1412  1419  sage: Q = singular('std(ideal(x^2,x+y^2+z^3))', type='qring') 
… 
… 

1745  1752  sage: singular('ringlist(basering)').sage() 
1746  1753  [['integer'], ['x', 'y', 'z'], [['lp', (1, 1, 1)], ['C', (0)]], Ideal (0) of Multivariate Polynomial Ring in x, y, z over Integer Ring] 
1747  1754  
1748   :: 
 1755  The first line of the next example is to work around a problem 
 1756  on Solaris machines (see trac ticket #11645):: 
1749  1757  
 1758  sage: R = GF(9,'a')['x','y'] 
1750  1759  sage: singular.eval('ring r10 = (9,a), (x,y,z),lp') 
1751  1760  'ring r10 = (9,a), (x,y,z),lp;' 
1752  1761  sage: singular.eval('setring R') 
diff git a/sage/rings/polynomial/term_order.py b/sage/rings/polynomial/term_order.py
a

b


1873  1873  orders for modules. This is not taken into account in 
1874  1874  Sage. 
1875  1875  
1876   EXAMPLE:: 
 1876  EXAMPLE: 
1877  1877  
 1878  The first line of this example is to work around a problem 
 1879  on Solaris machines (see trac ticket #11645):: 
 1880  
 1881  sage: R = GF(9,'a')['x','y'] 
1878  1882  sage: singular.eval('ring r1 = (9,x),(a,b,c,d,e,f),(M((1,2,3,0)),wp(2,3),lp)') 
1879  1883  'ring r1 = (9,x),(a,b,c,d,e,f),(M((1,2,3,0)),wp(2,3),lp);' 
1880  1884  sage: from sage.rings.polynomial.term_order import termorder_from_singular 