Ticket #11431: trac11431_solaris_workaround.patch

File trac11431_solaris_workaround.patch, 2.7 KB (added by SimonKing, 10 years ago)

Work around a bug on Solaris revealed by the first patch

  • sage/interfaces/singular.py

    # HG changeset patch
    # User Simon King <simon.king@uni-jena.de>
    # Date 1312633346 -7200
    # Node ID f250162917ed27d2fe35f0952289899b32572e47
    # Parent  830e31cecb6cf2028ce6748fedc5a136a61a6703
    #11431: Work around a bug on Solaris revealed by the previous patches
    
    diff --git a/sage/interfaces/singular.py b/sage/interfaces/singular.py
    a b  
    13501350        """
    13511351        Return the current basering in Singular as a polynomial ring or quotient ring.
    13521352
    1353         EXAMPLE::
     1353        EXAMPLE:
    13541354
     1355        The first line of this example is to work around a problem
     1356        on Solaris machines (see trac ticket #11645)::
     1357
     1358            sage: R = GF(9,'a')['x','y']
    13551359            sage: singular.eval('ring r1 = (9,x),(a,b,c,d,e,f),(M((1,2,3,0)),wp(2,3),lp)')
    13561360            'ring r1 = (9,x),(a,b,c,d,e,f),(M((1,2,3,0)),wp(2,3),lp);'
    13571361            sage: R = singular('r1').sage_global_ring()
     
    14051409            sage: R.base_ring()('I')
    14061410            1.00000000000000*I
    14071411
    1408         In our last example, the base ring is a quotient ring::
     1412        In our last example, the base ring is a quotient ring.
     1413        The first line is to work around a problem on Solaris
     1414        machines (see trac ticket #11645)::
    14091415
     1416            sage: R = GF(9,'a')['x','y']
    14101417            sage: singular.eval('ring r6 = (9,a), (x,y,z),lp')
    14111418            'ring r6 = (9,a), (x,y,z),lp;'
    14121419            sage: Q = singular('std(ideal(x^2,x+y^2+z^3))', type='qring')
     
    17451752            sage: singular('ringlist(basering)').sage()
    17461753            [['integer'], ['x', 'y', 'z'], [['lp', (1, 1, 1)], ['C', (0)]], Ideal (0) of Multivariate Polynomial Ring in x, y, z over Integer Ring]
    17471754
    1748         ::
     1755        The first line of the next example is to work around a problem
     1756        on Solaris machines (see trac ticket #11645)::
    17491757
     1758            sage: R = GF(9,'a')['x','y']
    17501759            sage: singular.eval('ring r10 = (9,a), (x,y,z),lp')
    17511760            'ring r10 = (9,a), (x,y,z),lp;'
    17521761            sage: singular.eval('setring R')           
  • sage/rings/polynomial/term_order.py

    diff --git a/sage/rings/polynomial/term_order.py b/sage/rings/polynomial/term_order.py
    a b  
    18731873    orders for modules. This is not taken into account in
    18741874    Sage.
    18751875
    1876     EXAMPLE::
     1876    EXAMPLE:
    18771877
     1878    The first line of this example is to work around a problem
     1879    on Solaris machines (see trac ticket #11645)::
     1880
     1881        sage: R = GF(9,'a')['x','y']
    18781882        sage: singular.eval('ring r1 = (9,x),(a,b,c,d,e,f),(M((1,2,3,0)),wp(2,3),lp)')
    18791883        'ring r1 = (9,x),(a,b,c,d,e,f),(M((1,2,3,0)),wp(2,3),lp);'
    18801884        sage: from sage.rings.polynomial.term_order import termorder_from_singular