# Ticket #11384: trac_11384_fan_complex.2.patch

File trac_11384_fan_complex.2.patch, 11.9 KB (added by vbraun, 11 years ago)

Updated patch

• ## sage/geometry/fan.py

# HG changeset patch
# User Volker Braun <vbraun@stp.dias.ie>
# Date 1309466932 -3600
# Node ID 6bdef91e1264d2eeee217672c17c6c39be3d3917
# Parent  49dc3b86bb7536a38f72ddb548d49b36a2d71e9c
Trac #11384: Construct the complex of a fan

This patch implements new methods fan.oriented_boundary(cone)
and fan.complex() to return chosen boundary orientations of
cones and the resulting homology complex.

diff -r 49dc3b86bb75 -r 6bdef91e1264 sage/geometry/fan.py
 a for i in range(0, self.nrays()) ]) ) return ring.ideal(gens) def oriented_boundary(self, cone): r""" Return the facets bounding cone with their induced orientation. INPUT: - cone -- a cone of the fan or the whole fan. OUTPUT: The boundary cones of cone as a formal linear combination of cones with coefficients \pm 1. Each summand is a facet of cone and the coefficient indicates whether their (chosen) orientation argrees or disagrees with the "outward normal first" boundary orientation. Note that the orientation of any individial cone is arbitrary. This method once and for all picks orientations for all cones and then computes the boundaries relative to that chosen orientation. If cone is the fan itself, the generating cones with their orientation relative to the ambient space are returned. See :meth:complex for the associated chain complex. If you do not require the orientation, use :meth:cone.facets()  instead. EXAMPLES:: sage: fan = toric_varieties.P(3).fan() sage: cone = fan(2)[0] sage: bdry = fan.oriented_boundary(cone);  bdry -1-d cone of Rational polyhedral fan in 3-d lattice N + 1-d cone of Rational polyhedral fan in 3-d lattice N sage: bdry[0] (-1, 1-d cone of Rational polyhedral fan in 3-d lattice N) sage: bdry[1] (1, 1-d cone of Rational polyhedral fan in 3-d lattice N) sage: fan.oriented_boundary(bdry[0][1]) -0-d cone of Rational polyhedral fan in 3-d lattice N sage: fan.oriented_boundary(bdry[1][1]) -0-d cone of Rational polyhedral fan in 3-d lattice N If you pass the fan itself, this method returns the orientation of the generating cones which is determined by the order of the rays in :meth:cone.ray_basis()  :: sage: fan.oriented_boundary(fan) 3-d cone of Rational polyhedral fan in 3-d lattice N - 3-d cone of Rational polyhedral fan in 3-d lattice N + 3-d cone of Rational polyhedral fan in 3-d lattice N - 3-d cone of Rational polyhedral fan in 3-d lattice N sage: [ matrix(cone.ray_basis()).det() for cone in fan.generating_cones() ] [-1, 1, -1, 1] A non-full dimensional fan:: sage: cone = Cone([(4,5)]) sage: fan = Fan([cone]) sage: fan.oriented_boundary(cone) 0-d cone of Rational polyhedral fan in 2-d lattice N sage: fan.oriented_boundary(fan) 1-d cone of Rational polyhedral fan in 2-d lattice N TESTS:: sage: fan = toric_varieties.P2().fan() sage: trivial_cone = fan(0)[0] sage: fan.oriented_boundary(trivial_cone) 0 """ if not cone is self: cone = self.embed(cone) if '_oriented_boundary' in self.__dict__: return self._oriented_boundary[cone] # Fix (arbitrary) orientations of the generating cones. Induced # by ambient space orientation for full-dimensional cones from sage.structure.formal_sum import FormalSum def sign(x): assert x != 0 if x>0: return +1 else: return -1 N_QQ = self.lattice().base_extend(QQ) dim = self.lattice_dim() outward_vectors = dict() generating_cones = [] for c in self.generating_cones(): if c.dim()==dim: outward_v = [] else: Q = N_QQ.quotient(c.rays()) outward_v = [ Q.lift(q) for q in Q.gens() ] outward_vectors[c] = outward_v orientation = sign(matrix(outward_v + list(c.ray_basis())).det()) generating_cones.append(tuple([orientation, c])) boundaries = {self:FormalSum(generating_cones)} # The orientation of each facet is arbitrary, but the # partititon of the boundary in positively and negatively # oriented facets is not. for d in range(dim, -1, -1): for c in self(d): c_boundary = [] c_matrix = matrix(outward_vectors[c] + list(c.ray_basis())) c_matrix_inv = c_matrix.inverse() for facet in c.facets(): outward_ray_indices = set(c.ambient_ray_indices()) \ .difference(set(facet.ambient_ray_indices())) outward_vector = - sum(self.ray(i) for i in outward_ray_indices) outward_vectors[facet] = [outward_vector] + outward_vectors[c] facet_matrix = matrix(outward_vectors[facet] + list(facet.ray_basis())) orientation = sign((c_matrix_inv * facet_matrix).det()) c_boundary.append(tuple([orientation, facet])) boundaries[c] = FormalSum(c_boundary) self._oriented_boundary = boundaries return boundaries[cone] def complex(self, base_ring=ZZ, extended=False): r""" Return the chain complex of the fan. To a d-dimensional fan \Sigma, one can canonically associate a chain complex K^\bullet .. math:: 0 \longrightarrow \ZZ^{\Sigma(d)} \longrightarrow \ZZ^{\Sigma(d-1)} \longrightarrow \cdots \longrightarrow \ZZ^{\Sigma(0)} \longrightarrow 0 where the leftmost non-zero entry is in degree 0 and the rightmost entry in degree d. See [Klyachko], eq. (3.2). This complex computes the homology of |\Sigma|\subset N_\RR with arbitrary support, .. math:: H_i(K) = H_{d-i}(|\Sigma|, \ZZ)_{\text{non-cpct}} For a complete fan, this is just the non-compactly supported homology of \RR^d. In this case, H_0(K)=\ZZ and 0 in all non-zero degrees. For a complete fan, there is an extended chain complex .. math:: 0 \longrightarrow \ZZ \longrightarrow \ZZ^{\Sigma(d)} \longrightarrow \ZZ^{\Sigma(d-1)} \longrightarrow \cdots \longrightarrow \ZZ^{\Sigma(0)} \longrightarrow 0 where we take the first \ZZ term to be in degree -1. This complex is an exact sequence, that is, all homology groups vanish. The orientation of each cone is chose as in :meth:oriented_boundary. INPUT: - extended -- Boolean (default:False). Whether to construct the extended complex, that is, including the \ZZ-term at degree -1 or not. - base_ring -- A ring (default: ZZ). The ring to use instead of \ZZ. OUTPUT: The complex associated to the fan as a :class:ChainComplex . Raises a ValueError if the extended complex is requested for a non-complete fan. EXAMPLES:: sage: fan = toric_varieties.P(3).fan() sage: K_normal = fan.complex(); K_normal Chain complex with at most 4 nonzero terms over Integer Ring sage: K_normal.homology() {0: Z, 1: 0, 2: 0, 3: 0} sage: K_extended = fan.complex(extended=True); K_extended Chain complex with at most 5 nonzero terms over Integer Ring sage: K_extended.homology() {0: 0, 1: 0, 2: 0, 3: 0, -1: 0} Homology computations are much faster over \QQ if you don't care about the torsion coefficients:: sage: toric_varieties.P2_123().fan().complex(extended=True, base_ring=QQ) Chain complex with at most 4 nonzero terms over Rational Field sage: _.homology() {0: Vector space of dimension 0 over Rational Field, 1: Vector space of dimension 0 over Rational Field, 2: Vector space of dimension 0 over Rational Field, -1: Vector space of dimension 0 over Rational Field} The extended complex is only defined for complete fans:: sage: fan = Fan([ Cone([(1,0)]) ]) sage: fan.is_complete() False sage: fan.complex(extended=True) Traceback (most recent call last): ... ValueError: The extended complex is only defined for complete fans! The definition of the complex does not refer to the ambient space of the fan, so it does not distinguish a fan from the same fan embedded in a subspace:: sage: K1 = Fan([Cone([(-1,)]), Cone([(1,)])]).complex() sage: K2 = Fan([Cone([(-1,0,0)]), Cone([(1,0,0)])]).complex() sage: K1 == K2 True Things get more complicated for non-complete fans:: sage: fan = Fan([Cone([(1,1,1)]), ...              Cone([(1,0,0),(0,1,0)]), ...              Cone([(-1,0,0),(0,-1,0),(0,0,-1)])]) sage: fan.complex().homology() {0: 0, 1: 0, 2: Z x Z, 3: 0} sage: fan = Fan([Cone([(1,0,0),(0,1,0)]), ...              Cone([(-1,0,0),(0,-1,0),(0,0,-1)])]) sage: fan.complex().homology() {0: 0, 1: 0, 2: Z, 3: 0} sage: fan = Fan([Cone([(-1,0,0),(0,-1,0),(0,0,-1)])]) sage: fan.complex().homology() {0: 0, 1: 0, 2: 0, 3: 0} REFERENCES: ..  [Klyachko] A. A. Klyachko, Equivariant Bundles on Toral Varieties. Mathematics of the USSR - Izvestiya 35 (1990), 337-375. """ dim = self.dim() delta = dict() for degree in range(1, dim+1): m = matrix(base_ring, len(self(degree-1)), len(self(degree)), base_ring.zero()) for i, cone in enumerate(self(degree)): boundary = self.oriented_boundary(cone) for orientation, d_cone in boundary: m[self(degree-1).index(d_cone), i] = orientation delta[dim-degree] = m from sage.homology.chain_complex import ChainComplex if not extended: return ChainComplex(delta, base_ring=base_ring) # add the extra entry for the extended complex if not self.is_complete(): raise ValueError('The extended complex is only defined for complete fans!') extension = matrix(base_ring, len(self(dim)), 1, base_ring.zero()) generating_cones = self.oriented_boundary(self) for orientation, d_cone in generating_cones: extension[self(dim).index(d_cone), 0] = orientation delta[-1] = extension return ChainComplex(delta, base_ring=base_ring) def discard_faces(cones): r"""