Ticket #11379: trac_11379-reviewer-docs.patch

File trac_11379-reviewer-docs.patch, 3.0 KB (added by rbeezer, 10 years ago)
  • sage/combinat/tiling.py

    # HG changeset patch
    # User Rob Beezer <beezer@ups.edu>
    # Date 1310354460 25200
    # Node ID 99a8c2df1140923badca5e9c1be356647f234813
    # Parent  e91d55c111a109fb0e2bf21453a1102a25d2c043
    11379: reviewer documentation changes
    
    diff --git a/sage/combinat/tiling.py b/sage/combinat/tiling.py
    a b  
    1010
    1111This module defines two classes:
    1212
    13 - :class:`sage.games.quantumino.Polyomino` class, to represent polyominoes
     13- :class:`sage.combinat.tiling.Polyomino` class, to represent polyominoes
    1414  in arbitrary dimension. The goal of this class is to return all the
    1515  rotated, reflected and/or translated copies of a polyomino that are
    1616  contained in a certain box.
    1717
    18 - :class:`sage.games.quantumino.TilingSolver` class, to solve the general
     18- :class:`sage.combinat.tiling.TilingSolver` class, to solve the general
    1919  problem of tiling a rectangular `n`-dimensional box with a set of
    2020  `n`-dimensional polyominoes. One can specify if rotations and reflections
    2121  are allowed or not and if pieces can be reused or not. This class convert
     
    447447
    448448        .. NOTE::
    449449
    450             No guarentee of unicity.
     450            No guarantee of unicity.
    451451
    452452        INPUT:
    453453
  • sage/games/quantumino.py

    diff --git a/sage/games/quantumino.py b/sage/games/quantumino.py
    a b  
    1010Mathematique in Montreal by Franco Saliola during winter 2011.
    1111
    1212The solution uses the dancing links code which is in Sage and is based on
    13 the more general code available in the module ``sage.combinat.tiling``.
     13the more general code available in the module :mod:`sage.combinat.tiling`.
    1414Dancing links were originally introduced by Donald Knuth in 2000 [3]. In
    1515particular, Knuth used dancing links to solve tilings of a region by 2D
    1616pentaminos.  Here we extend the method for 3D pentaminos.
     
    7575    Polyomino: [(0, 0, 0), (0, 1, 0), (0, 2, 0), (0, 2, 1), (1, 0, 0)], Color: orange
    7676    sage: s.show3d()                                      # long time (<1s)
    7777
    78 The solution is iterable. This may be used to explicit the positions of each
     78The solution is iterable. This may be used to explicitly list the positions of each
    7979pentamino::
    8080
    8181    sage: for p in s: p                                   # long time (<1s)
     
    128128    ...
    129129    StopIteration
    130130
    131 The implementation allows a lot of introspection. From the TilingSolver
    132 object, it is possible to retrieve the rows that are passed to the DLX
     131The implementation allows a lot of introspection. From the
     132:class:`~sage.combinat.tiling.TilingSolver` object,
     133it is possible to retrieve the rows that are passed to the DLX
    133134solver and count them. It is also possible to get an instance of the DLX
    134135solver to play with it::
    135136
     
    371372##############################
    372373class QuantuminoSolver(SageObject):
    373374    r"""
    374     Return the Quantumino solver for the giving box where one of the
     375    Return the Quantumino solver for the given box where one of the
    375376    pentamino is put aside.
    376377
    377378    INPUT: