# HG changeset patch
# User William Stein <wstein@gmail.com>
# Date 1305657943 25200
# Node ID 04d8a77851fa24a8f7f8902b92e17bdbb5eccd4a
# Parent 9ac3ec00648d2f81054b1155e44e73ddc3445b53
trac 11346  major bug in the conductor function for elliptic curves over number fields
diff git a/sage/schemes/elliptic_curves/ell_number_field.py b/sage/schemes/elliptic_curves/ell_number_field.py
a

b


1242  1242  sage: E=EllipticCurve([w,1,0,w6,0]) 
1243  1243  sage: E.conductor() 
1244  1244  Fractional ideal (86304, w + 5898) 
 1245  
 1246  An example raised in \#11346:: 
 1247  
 1248  sage: K.<g> = NumberField(x^2  x  1) 
 1249  sage: E1 = EllipticCurve(K,[0,0,0,1/48,161/864]) 
 1250  sage: [(p.smallest_integer(),e) for p,e in E1.conductor().factor()] 
 1251  [(2, 4), (3, 1), (5, 1)] 
1245  1252  """ 
1246  1253  try: 
1247  1254  return self._conductor 
… 
… 

1253  1260  # K==QQ it has to be ZZ.ideal(1). 
1254  1261  OK = self.base_ring().ring_of_integers() 
1255  1262  self._conductor = prod([d.prime()**(d.conductor_valuation()) \ 
1256   for d in self.local_data()],\ 
 1263  for d in self.integral_model().local_data()],\ 
1257  1264  OK.ideal(1)) 
1258  1265  return self._conductor 
1259  1266  