Ticket #11346: trac_11346.patch

File trac_11346.patch, 1.4 KB (added by was, 9 years ago)
  • sage/schemes/elliptic_curves/ell_number_field.py

    # HG changeset patch
    # User William Stein <wstein@gmail.com>
    # Date 1305657943 25200
    # Node ID 04d8a77851fa24a8f7f8902b92e17bdbb5eccd4a
    # Parent  9ac3ec00648d2f81054b1155e44e73ddc3445b53
    trac 11346 -- major bug in the conductor function for elliptic curves over number fields
    
    diff --git a/sage/schemes/elliptic_curves/ell_number_field.py b/sage/schemes/elliptic_curves/ell_number_field.py
    a b  
    12421242            sage: E=EllipticCurve([w,-1,0,-w-6,0])
    12431243            sage: E.conductor()
    12441244            Fractional ideal (86304, w + 5898)
     1245
     1246        An example raised in \#11346::
     1247
     1248            sage: K.<g> = NumberField(x^2 - x - 1)
     1249            sage: E1 = EllipticCurve(K,[0,0,0,-1/48,-161/864])
     1250            sage: [(p.smallest_integer(),e) for p,e in E1.conductor().factor()]
     1251            [(2, 4), (3, 1), (5, 1)]
    12451252        """
    12461253        try:
    12471254            return self._conductor
     
    12531260        # K==QQ it has to be ZZ.ideal(1).
    12541261        OK = self.base_ring().ring_of_integers()
    12551262        self._conductor = prod([d.prime()**(d.conductor_valuation()) \
    1256                                 for d in self.local_data()],\
     1263                                for d in self.integral_model().local_data()],\
    12571264                               OK.ideal(1))
    12581265        return self._conductor
    12591266