# Ticket #11316: trac11316_reviewer.patch

File trac11316_reviewer.patch, 5.1 KB (added by SimonKing, 11 years ago)

Raise an error on invalid degree weights. State in the docs which weights are accepted

• ## sage/rings/polynomial/term_order.py

```# HG changeset patch
# User Simon King <simon.king@uni-jena.de>
# Date 1306941016 -7200
# Node ID e5236dab6a3b2cde3b45d0de2b5b12791dac341b
# Parent  94c5b31731e9441e3124a620458d0726cdc8c34c
#11316: Reviewer patch. Raise an error for non-positive weights.

diff --git a/sage/rings/polynomial/term_order.py b/sage/rings/polynomial/term_order.py```
 a sage: x^2*y*z^2 > x*y^3*z True Weighted degree reverse lexicographic (wdegrevlex) Weighted degree reverse lexicographic (wdegrevlex), positive integral weights Let `\deg_w(x^a) = a_1w_1 + a_2w_2 + \dots + a_nw_n` with weights `w`, then `x^a < x^b` if and only if `\deg_w(x^a) < \deg_w(x^b)` or `\deg_w(x^a) = \deg_w(x^b)` and there exists `1 \le i \le n` such that `a_n = b_n, \dots, a_{i+1} = b_{i+1}, a_i > b_i`. sage: y*z > x^3*y False Weighted degree lexicographic (wdeglex) Weighted degree lexicographic (wdeglex), positive integral weights Let `\deg_w(x^a) = a_1w_1 + a_2w_2 + \dots + a_nw_n` with weights `w`, then `x^a < x^b` if and only if `\deg_w(x^a) < \deg_w(x^b)` or `\deg_w(x^a) = \deg_w(x^b)` and there exists `1 \le i \le n` such that `a_1 = b_1, \dots, a_{i-1} = b_{i-1}, a_i < b_i`. sage: y*z > x^3*y False Negative weighted degree reverse lexicographic (negwdegrevlex) Negative weighted degree reverse lexicographic (negwdegrevlex), positive integral weights Let `\deg_w(x^a) = a_1w_1 + a_2w_2 + \dots + a_nw_n` with weights `w`, then `x^a < x^b` if and only if `\deg_w(x^a) > \deg_w(x^b)` or `\deg_w(x^a) = \deg_w(x^b)` and there exists `1 \le i \le n` such that `a_n = b_n, \dots, a_{i+1} = b_{i+1}, a_i > b_i`. sage: y*z > x^3*y False Negative weighted degree lexicographic (negwdeglex) Negative weighted degree lexicographic (negwdeglex), positive integral weights Let `\deg_w(x^a) = a_1w_1 + a_2w_2 + \dots + a_nw_n` with weights `w`, then `x^a < x^b` if and only if `\deg_w(x^a) > \deg_w(x^b)` or `\deg_w(x^a) = \deg_w(x^b)` and there exists `1 \le i \le n` such that `a_1 = b_1, \dots, a_{i-1} = b_{i-1}, a_i < b_i`. sage: y*z > x^3*y False Of these, only 'degrevlex', 'deglex', 'wdegrevlex', 'wdeglex', 'invlex' and 'lex' are global orders. Of these, only 'degrevlex', 'deglex', 'wdegrevlex', 'wdeglex', 'invlex' and 'lex' are global orders. Sage also supports matrix term order. Given a square matrix `A`, - ``name`` - name of the term order (default: lex) - ``n`` - number of variables (default is `0`) or weights for weighted degree orders - ``n`` - number of variables (default is `0`) weights for weighted degree orders. The weights are converted to integers and must be positive. - ``blocks`` - this is deprecated. non-block orders like `deglex` are constructed. However, it is useful if block orders are to be constructed from this ``TermOrder`` object later. TEST: We demonstrate that non-positive weights are refused and non-integral weights are converted to integers (and potentially rounded):: sage: N. = PolynomialRing(QQ, 3, order=TermOrder('wdeglex',[-1,2,-3])) Traceback (most recent call last): ... ValueError: the degree weights must be positive integers sage: N. = PolynomialRing(QQ, 3, order=TermOrder('wdeglex',[1.1,2,3])) sage: a.degree() 1 """ if isinstance(name, TermOrder): self.__copy(name) elif isinstance(name, str) and (isinstance(n, tuple) or isinstance(n,list)): # weighted degree term orders if name not in print_name_mapping.keys() and name not in singular_name_mapping.values() and not force: raise TypeError, "Unknown term order '%s'"%(name,) weights = tuple(n) # n is a tuple of weights weights = tuple(int(w) for w in n) # n is a tuple of weights if any([w<=0 for w in weights]): raise ValueError, "the degree weights must be positive integers" self._length = len(weights) self._name = name //        block   3 : ordering lp //                  : names    x8 x9 //        block   4 : ordering C """ return self._singular_str """ Return the term order blocks of self. NOTE: This method has been added in trac ticket #11316. There used to be an *attribute* of the same name and the same content. So, it is a backward incompatible syntax change. EXAMPLE:: sage: t=TermOrder('deglex',2)+TermOrder('lex',2)