1 | r""" |
---|
2 | sage: g = bar_chart([randrange(15) for i in range(20)], color='red') |
---|
3 | sage: g = bar_chart([x^2 for x in range(1,20)], width=0.2) |
---|
4 | sage: liste = [10 + floor(10*sin(i)) for i in range(100)] |
---|
5 | sage: g = bar_chart(liste) |
---|
6 | sage: g = finance.TimeSeries(liste).plot_histogram(bins=20) |
---|
7 | """ |
---|
8 | |
---|
9 | r""" |
---|
10 | sage: from random import * |
---|
11 | sage: n, l, x, y = 10000, 1, 0, 0; p = [[0, 0]] |
---|
12 | sage: for k in range(n): |
---|
13 | ... theta = (2 * pi * random()).n(digits=5) |
---|
14 | ... x, y = x + l * cos(theta), y + l * sin(theta) |
---|
15 | ... p.append([x, y]) |
---|
16 | sage: g1 = line([p[n], [0, 0]], color='red', thickness=2) |
---|
17 | sage: g1 += line(p, thickness=.4); # g1.show(aspect_ratio=1) |
---|
18 | """ |
---|
19 | |
---|
20 | r""" |
---|
21 | sage: length = 200; n = var('n') |
---|
22 | sage: u(n) = n * sqrt(2) |
---|
23 | sage: z(n) = exp(2 * I * pi * u(n)) |
---|
24 | sage: vertices = [CC(0, 0)] |
---|
25 | sage: for n in range(1, length): |
---|
26 | ... vertices.append(vertices[n - 1] + CC(z(n))) |
---|
27 | sage: g = line(vertices); # g.show(aspect_ratio=1) |
---|
28 | """ |
---|
29 | |
---|
30 | r""" |
---|
31 | sage: x = var('x'); y = function('y',x) |
---|
32 | sage: DE = x*diff(y, x) == 2*y + x^3 |
---|
33 | sage: desolve(DE, [y,x]) |
---|
34 | (c + x)*x^2 |
---|
35 | sage: sol = [] |
---|
36 | sage: for i in srange(-2, 2, 0.2): |
---|
37 | ... sol.append(desolve(DE, [y, x], ics=[1, i])) |
---|
38 | ... sol.append(desolve(DE, [y, x], ics=[-1, i])) |
---|
39 | sage: g = plot(sol, x, -2, 2) |
---|
40 | sage: y = var('y') |
---|
41 | sage: g += plot_vector_field((x, 2*y+x^3), (x, -2, 2), (y, -1, 1)) |
---|
42 | sage: # g.show(ymin=-1, ymax=1) |
---|
43 | """ |
---|
44 | |
---|
45 | r""" |
---|
46 | sage: x = var('x'); y = function('y',x) |
---|
47 | sage: DE = x*diff(y, x) == 2*y + x^3 |
---|
48 | sage: g = Graphics() |
---|
49 | sage: for i in srange(-1, 1, 0.1): |
---|
50 | ... g += line(desolve_rk4(DE, y, ics=[1, i],\ |
---|
51 | ... step=0.05, end_points=[0,2])) |
---|
52 | ... g += line(desolve_rk4(DE, y, ics=[-1, i],\ |
---|
53 | ... step=0.05, end_points=[-2,0])) |
---|
54 | sage: y = var('y') |
---|
55 | sage: g = plot_vector_field((x, 2*y + x^3), (x,-2,2), (y,-1,1)) |
---|
56 | sage: # g.show(ymin=-1, ymax=1) |
---|
57 | """ |
---|