# HG changeset patch
# User Rob Beezer <beezer@ups.edu>
# Date 1299784522 28800
# Node ID 25aa3b3919010583fa0ce820b86d8a3f9495d046
# Parent 8438b7c20d79c02a2ece3e1c3f7224a772ff8f07
10911: inverse method for permutation group elements
diff r 8438b7c20d79 r 25aa3b391901 sage/groups/perm_gps/permgroup_element.pyx
a

b


744  744  order = Integer(order_c) 
745  745  sage_free(seen) 
746  746  return int(order_c) if order is None else order 
 747  
 748  def inverse(self): 
 749  r""" 
 750  Returns the inverse permutation. 
 751  
 752  OUTPUT: 
 753  
 754  For an element of a permutation group, this method returns the inverse 
 755  element, which is both the inverse function and the inverse as an 
 756  element of a group. 
 757  
 758  EXAMPLES:: 
 759  
 760  sage: s = PermutationGroupElement("(1,2,3)(4,5)") 
 761  sage: s.inverse() 
 762  (1,3,2)(4,5) 
 763  
 764  sage: A = AlternatingGroup(4) 
 765  sage: t = A("(1,2,3)") 
 766  sage: t.inverse() 
 767  (1,3,2) 
 768  
 769  There are several ways (syntactically) to get an inverse 
 770  of a permutation group element. :: 
 771  
 772  sage: s = PermutationGroupElement("(1,2,3,4)(6,7,8)") 
 773  sage: s.inverse() == s^1 
 774  True 
 775  sage: s.inverse() == ~s 
 776  True 
 777  """ 
 778  return ~self 
747  779  
748  780  def sign(self): 
749  781  """ 