# HG changeset patch
# User Francois Bissey <francois.bissey@canterbury.ac.nz>
# Date 1300314020 46800
# Node ID c0f9c790b93136cf7e940c2dcddaf4ff47e35c67
# Parent 0af12745b0716698f9ebcd085305751dab2edf64
trac #10792 fix calculus/riemann.pyx doctests. Some of these tests are very sensitive so I reduced the number of
significative figures of most of them. I also kept exx in the results to keep track of the order of magnitude. Some of
these results should be close to zero and if the values move again in the future it will be easy to see if it is from a
small value to another small value.
diff r 0af12745b071 r c0f9c790b931 sage/calculus/riemann.pyx
a

b


121  121  
122  122  sage: x = 0.75 # long time 
123  123  sage: print "error =", m.inverse_riemann_map(m.riemann_map(x))  x # long time 
124   error = (0.0001211863...+0.001606139...j) 
 124  error = (0.000...+0.0016...j) 
125  125  
126  126  ALGORITHM: 
127  127  
… 
… 

486  486  
487  487  sage: m = Riemann_Map([lambda t: e^(I*t)  0.5*e^(I*t)], [lambda t: I*e^(I*t) + 0.5*I*e^(I*t)], 0) # long time (4 sec) 
488  488  sage: m.riemann_map(0.25 + sqrt(0.5)) # long time 
489   (0.137514137885...+0.876696023004...j) 
 489  (0.137514...+0.87669602...j) 
490  490  sage: m.riemann_map(1.3*I) # long time 
491   (1.561029396...+0.989694535737...j) 
 491  (1.56...e05+0.989694...j) 
492  492  sage: I = CDF.gen() # long time 
493  493  sage: m.riemann_map(0.4) # long time 
494   (0.733242677182...+3.50767714...j) 
 494  (0.733242677...+3.2...e06j) 
495  495  sage: import numpy as np # long time 
496  496  sage: m.riemann_map(np.complex(3, 0.0001)) # long time 
497   (1.405757135...+1.05106...j) 
 497  (1.405757...e05+8.06...e10j) 
498  498  """ 
499  499  pt1 = np.complex(pt) 
500  500  cdef np.ndarray[double complex, ndim=1] q_vector = 1 / ( 