# Changeset 2338:efd19da829d4

Ignore:
Timestamp:
01/11/07 17:41:32 (6 years ago)
Branch:
default
Message:

more doctests.

Location:
sage
Files:
4 edited

Unmodified
Removed
• ## sage/calculus/calculus.py

 r2331 """nodoctest""" from sage.rings.all import (CommutativeRing, RealField, is_Polynomial, is_RealNumber, is_ComplexNumber, RR, SymbolicExpressionRing = SymbolicExpressionRing_class() SER = SymbolicExpressionRing # conversions is the dict of the form system:command class SymbolicExpression(RingElement): r""" A Symbolic Expression in acoordance with SEP #1. """ # conversions is the dict of the form system:command A Symbolic Expression. """ def __init__(self, conversions={}): RingElement.__init__(self, SymbolicExpressionRing)
• ## sage/functions/piecewise.py

 r2278 sage: f = Piecewise([[(-pi,pi),f]]) sage: float(f.fourier_series_cosine_coefficient(2,pi)) 0.99999999976227982 1.0 sage: f1 = lambda x:-1 sage: f2 = lambda x:2
• ## sage/modular/modsym/ambient.py

 r2337 the $S^e$ as a module over the \emph{anemic} Hecke algebra adjoin the star involution. EXAMPLES: sage: M = ModularSymbols(Gamma0(22), 2); M Modular Symbols space of dimension 7 for Gamma_0(22) of weight 2 with sign 0 over Rational Field sage: M.factorization(): ...    print b.dimension(), b.level(), e 1 11 2 1 11 2 1 11 2 1 22 1 An example with sign 1: sage: M = ModularSymbols(Gamma0(22), 2, sign=1); M Modular Symbols space of dimension 5 for Gamma_0(22) of weight 2 with sign 1 over Rational Field sage: for b, e in M.factorization(): ...    print b.dimension(), b.level(), e 1 11 2 1 11 2 1 22 1 An example for Gamma1: sage: M = ModularSymbols(Gamma1(26), 2, sign=1); M Modular Symbols space of dimension 33 for Gamma_1(26) of weight 2 with sign 1 and over Rational Field sage: for b, e in M.factorization(): ...    print b.dimension(), b.level(), e 1 13 2 1 13 2 1 13 2 2 13 2 2 13 2 2 13 2 2 13 2 2 13 2 1 26 1 1 26 1 1 26 1 2 26 1 2 26 1 An example with level divisible by a square: sage: M = ModularSymbols(Gamma0(2*9),2); M ??? sage: for b, e in M.factorization(): ...    print b.dimension(), b.level(), e ??? """ """ ##         EXAMPLES: ##             sage: M = ModularSymbols(Gamma0(22), 2); M ##             Modular Symbols space of dimension 7 for Gamma_0(22) of weight 2 with sign 0 over Rational Field ##             sage: M.factorization(): ##             ...    print b.dimension(), b.level(), e ##             1 11 2 ##             1 11 2 ##             1 11 2 ##             1 22 1 ##         An example with sign 1: ##             sage: M = ModularSymbols(Gamma0(22), 2, sign=1); M ##             Modular Symbols space of dimension 5 for Gamma_0(22) of weight 2 with sign 1 over Rational Field ##             sage: for b, e in M.factorization(): ##             ...    print b.dimension(), b.level(), e ##             1 11 2 ##             1 11 2 ##             1 22 1 ##         An example for Gamma1: ##             sage: M = ModularSymbols(Gamma1(26), 2, sign=1); M ##             Modular Symbols space of dimension 33 for Gamma_1(26) of weight 2 with sign 1 and over Rational Field ##             sage: for b, e in M.factorization(): ##             ...    print b.dimension(), b.level(), e ##             1 13 2 ##             1 13 2 ##             1 13 2 ##             2 13 2 ##             2 13 2 ##             2 13 2 ##             2 13 2 ##             2 13 2 ##             1 26 1 ##             1 26 1 ##             1 26 1 ##             2 26 1 ##             2 26 1 ##         An example with level divisible by a square: ##             sage: M = ModularSymbols(Gamma0(2*9),2); M ##             ??? ##             sage: for b, e in M.factorization(): ##             ...    print b.dimension(), b.level(), e ##             ??? try: return self._factorization
• ## sage/modular/modsym/subspace.py

 r2288 (Modular Symbols subspace of dimension 1 of Modular Symbols space of dimension 3 for Gamma_0(11) of weight 2 with sign 0 over Rational Field) sage: [A.T(2).matrix() for A, _ in D] [[3], [-2], [-2]] [[-2], [-2], [3]] sage: [A.star_eigenvalues() for A, _ in D] [[1], [1], [-1]] [[1], [-1], [1]] In this example there is one old factor squared.
Note: See TracChangeset for help on using the changeset viewer.