Ignore:
Timestamp:
12/03/07 21:40:16 (5 years ago)
Branch:
default
Message:

Fix some doctests broken by fixing the ordering of factorizations -- trac #1392.

Location:
sage
Files:
4 edited

Unmodified
Removed
• ## sage/calculus/wester.py

 r7531 sage: print d.factor() (-1) * (-a + b) * (a - c) * (b - c) * (a - d) * (b - d) * (c - d) (-1) * (c - d) * (b - d) * (b - c) * (-a + b) * (a - d) * (a - c) sage: # Find the eigenvalues of a 3x3 integer matrix.
• ## sage/modular/modsym/subspace.py

 r5510 adjoin the star involution. The factors are sorted by dimension -- don't depend on much more for now. ASSUMPTION: self is a module over the anemic Hecke algebra. (Modular Symbols subspace of dimension 1 of Modular Symbols space of dimension 3 for Gamma_0(11) of weight 2 with sign 0 over Rational Field) sage: [A.T(2).matrix() for A, _ in D] [[-2], [-2], [3]] [[-2], [3], [-2]] sage: [A.star_eigenvalues() for A, _ in D] [[1], [-1], [1]] [[-1], [1], [1]] In this example there is one old factor squared.
• ## sage/modular/ssmod/ssmod.py

 r3523 (Vector space of degree 33 and dimension 1 over Finite Field of size 97 Basis matrix: [ 0  0  0  1 96 96  1  0 95  1  1  1  1 95  2 96  0  0 96 96  0  0 96  2 96 96  2  0  0  1  1 95  0], True), [ 0  0  0  1 96 96  1 96 96  0  2 96 96  0  1  0  1  2 95  0  1  1  0  1  0 95  0 96 95  1 96  0  2], True), (Vector space of degree 33 and dimension 1 over Finite Field of size 97 Basis matrix: [ 0  1 96 16 75 22 81  0  0 17 17 80 80  0  0 16  1 40 74 23 57 96 81  0 23 74  0  0  0 24 73  0  0], True), [ 0  1 96 75 16 81 22 17 17  0  0 80 80  1 16 40 74  0  0 96 81 23 57 74  0  0  0 24  0 23 73  0  0], True), (Vector space of degree 33 and dimension 1 over Finite Field of size 97 Basis matrix: [ 0  1 96 90 90  7  7  0  0  6 91  6 91  0  0  7 13  0 91  6  0 84 90  0 91  6  0  0  0 90  7  0  0], True) [ 0  1 96 90 90  7  7  6 91  0  0 91  6 13  7  0 91  0  0 84 90  6  0  6  0  0  0 90  0 91  7  0  0], True) ] sage: len(D)
• ## sage/rings/polynomial/polynomial_element.pyx

 r7532 sage: R. = RealField(100)[] sage: F = factor(x^2-3); F (1.0000000000000000000000000000*x + 1.7320508075688772935274463415) * (1.0000000000000000000000000000*x - 1.7320508075688772935274463415) (1.0000000000000000000000000000*x - 1.7320508075688772935274463415) * (1.0000000000000000000000000000*x + 1.7320508075688772935274463415) sage: expand(F) 1.0000000000000000000000000000*x^2 - 3.0000000000000000000000000000 [(1, 1), (-1, 1)] sage: f.roots(ring=QQ) [(1, 1), (-1, 1), (3/2, 1)] [(3/2, 1), (1, 1), (-1, 1)] An example involving large numbers:
Note: See TracChangeset for help on using the changeset viewer.